Frontiers of Physics分享


frontiers of physics 2016(5)

已有 1940 次阅读 2017-1-23 15:17 |系统分类:科研笔记

Gravitational form factors and nucleon spin structure  Collection

O. V. Teryaev

Front. Phys.  2016, 11 (5): 111207 .   DOI:  10.1007/s11467-016-0573-6 Abstract PDF (196KB)

Light  dark sector searches at low-energy high-luminosity e+e− colliders Collection

Peng-Fei  Yin, Shou-Hua Zhu

Front.  Phys.  2016, 11 (5): 111403 .    DOI: 10.1007/s11467-016-0541-1 Abstract PDF (688KB)

Cyclokinetic  models and simulations for high-frequency turbulence in fusion plasmas

Zhao  Deng (赵登), R.  E. Waltz, Xiaogang Wang (王晓钢)

Front.  Phys.  2016, 11 (5): 115203 .    DOI: 10.1007/s11467-016-0555-8 Abstract PDF (1220KB)

Strongly  correlated Fermi systems as a new state of matter

V.  R. Shaginyan, A. Z. Msezane, G. S. Japaridze, K. G. Popov, V. A. Khodel

Front.  Phys.  2016, 11 (5): 117103 .    DOI: 10.1007/s11467-016-0608-0 Abstract PDF (1980KB)

Robustness  of s-wave pairing symmetry in iron-based superconductors and its implications  for fundamentals of magnetically driven high-temperature superconductivity

Jiangping  Hu, Jing Yuan

Front.  Phys.  2016, 11 (5): 117404 .    DOI: 10.1007/s11467-016-0572-7 Abstract PDF (423KB)

Anisotropic  evolution of energy gap in Bi2212 superconductor

A.  P. Durajski

Front.  Phys.  2016, 11 (5): 117408 .    DOI: 10.1007/s11467-016-0595-0 Abstract PDF (11465KB)

Study  of spatial signal transduction in bistable switches

Qi  Zhao (赵琪), Cheng-Gui  Yao (姚成贵), Jun  Tang (唐军), Li-Wei  Liu (刘立伟)

Front.  Phys.  2016, 11 (5): 110501 -110501 .    DOI: 10.1007/s11467-016-0571-8 Abstract PDF (277KB)

Photon  condensation: A new paradigm for Bose–Einstein condensation

Renju  Rajan, P. Ramesh Babu, K. Senthilnathan

Front.  Phys.  2016, 11 (5): 110502 .    DOI: 10.1007/s11467-016-0568-3 Abstract PDF (621KB)

Design  of diamond-shaped transient thermal cloaks with homogeneous isotropic  materials

Ting-Hua  Li, Dong-Lai  Zhu, Fu-Chun  Mao,  Ming Huang, Jing-Jing  Yang, Shou-Bo  Li

Front.  Phys.  2016, 11 (5): 110503 .    DOI: 10.1007/s11467-016-0575-4 Abstract PDF (506KB)

Hydrogen  storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers

Yi-Han  Cheng, Chuan-Yu Zhang, Juan Ren, Kai-Yu Tong

Front.  Phys.  2016, 11 (5): 113101 .    DOI: 10.1007/s11467-016-0559-4 Abstract PDF (602KB)

Multi-peak  solitons in PT-symmetric Bessel optical lattices with defects

Hongcheng  Wang

Front.  Phys.  2016, 11 (5): 114204 .    DOI: 10.1007/s11467-016-0569-2 Abstract PDF (780KB)


Simulations with more fundamental physics did not help

The success of tokamak fusion reactors like ITER depends on the burning plasma having a very hot edge with good confinement. Current tokamaks can easily get into this high performance operation (H-mode). The hot edge lifts the core to the high temperatures. However if not enough heating power is supplied to the tokamak plasma, it falls into low performance operation (L-mode) with a high-level of turbulent transport and a cold edge. A long-standing problem for theory based simulations:  What quantitatively accounts for this high-level of turbulent transport in the L-mode cold edge?
Standard “gyrokinetic” simulations and models average over the fast “gyro-orbit” motion. They account very well for the low turbulence transport in the hot tokamak core. However they significantly underpredict the observed cold L-mode edge transport.  Is some process or mechanism being left out of the standard gyrokinetic simulations?  Or is there a breakdown in the standard gyrokinetic approximation of averaging over the fast “gyro-orbit” motion when the turbulence level is high?
We started to do computer simulations with more fundamental and exact physics to definitively answer the last questions. The new and more expensive “cyclokinetic” simulations follow the fast ion gyro-orbit motion without any averaging approximation.  As required, the less fundamental gyrokinetic simulations recover the more fundamental cyclokinetic simulations when the gyro-orbit motion is fast enough compared to the slow turbulent motion. This is very much like Newton’s theory of gravity recovers Einstein’s when the gravitational forces are weak enough. However when the turbulence level is very high, as in the tokamak cold edge, and the gyro-orbit is not fast enough, the cyclokinetic transport is found to be lower than gyrokinetic transport. The mystery remains:  what is being left out of standard gyrokinetic simulations that would account for the missing L-mode near edge transport?

For more detailed information, please refer to the article “Cyclokinetic models and simulations for high-frequency turbulence in fusion plasmas” by Zhao Deng, R. E. Waltz, and Xiaogang Wang, Front. Phys. 11(5), 115203 (2016). [Photo credits: Zhao Deng]

上一篇:frontiers of physics部分文章
下一篇:frontiers of physics 2016(6)
收藏 IP: 124.207.48.*| 热度|


该博文允许注册用户评论 请点击登录 评论 (0 个评论)



Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2023-2-4 13:50

Powered by

Copyright © 2007- 中国科学报社