Kevin2015的个人博客分享 http://blog.sciencenet.cn/u/Kevin2015

博文

DNA甲基化分析

已有 4585 次阅读 2016-6-16 11:07 |个人分类:知识点专题|系统分类:科研笔记

一篇综述 Analysing and interpreting DNA methylation data

pipeline:

整理自:http://bioconductor.org/help/course-materials/2015/BioC2015/methylation450k.html

source("http://www.bioconductor.org/biocLite.R")

biocLite(c("IlluminaHumanMethylation450kmanifest","IlluminaHumanMethylation450kanno.ilmn12.hg19","minfiData", "sva"," minfi"))nn

library(minfi)library(minfiData)library(sva)Reading DatabaseDir <- system.file("extdata", package="minfiData")targets <- read.450k.sheet(baseDir)RGSet <- read.450k.exp(targets = targets)Preprocessing and normalizationGRSET <- preprocessFunnorm(RGSet)[preprocessFunnorm] Background and dye bias correction with noob [preprocessNoob] Using sample number 2 as reference level...[preprocessFunnorm] Mapping to genome[preprocessFunnorm] Quantile extraction[preprocessFunnorm] Normalizationannotation <- getAnnotation(GRset)names(annotation)GRset <- dropLociWithSnps(GRset, snps=c("SBE","CpG"), maf=0)Identifying DMRs and DMPsbeta <- getBeta(GRSET)age  <- pData(GRSET)$ageposition analysis:dmp <- dmpFinder(beta, pheno = age  , type = "continuous")head(dmp) DMR analysis:

1.  Define yourphenotype of interest

pheno <- pData(GRSET)$statusdesignMatrix <- model.matrix(~ pheno)

2.  Run the algorithmwith B=0 permutation on the Beta-values, with a medium difference cutoff, say0.2 (which corresponds to 20% difference on the Beta-values):

dmrs <- bumphunter(GRSET, design = designMatrix,              cutoff = 0.2, B=0, type="Beta")

3.  If the number ofcandidate bumps is large, say >30000, increase the cutoff to reduce thenumber of candidate bumps. The rationale behind this is that the most of theadditional candidate regions found by lowering the cutoff will be found to benon-significant after the permutation scheme, and therefore time can be savedby being more stringent on the cutoff (high cutoff).

4.  Once you havedecided on the cutoff, run the algorithm with a large number of permutations,say B=1000:

dmrs <- bumphunter(GRSET, design = designMatrix,             cutoff = 0.2, B=1000, type="Beta")

5.  






https://wap.sciencenet.cn/blog-2609994-984986.html

上一篇:生存分析及HR计算
下一篇:STAR 比对软件用法举例
收藏 IP: 14.204.63.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-11 03:43

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部