|||
原本不想再就五次方程解这个问题发什么议论了,但有人还在发奇谈怪论,有人一而再、再而三地揪住我不放。实在忍无可忍,还想再说几句。
一、关于五次方程解的最后说明(这个说明完全放弃数学的严格论述,希望仅具中学数学基础的年轻朋友也能看懂)
1.1 什么是不可约方程
最常用的数域有三个:有理数,实数,复数。它们之所以称为数域,是因为在其中可以做“加、减、乘、除”(做除法时分母不为零)。整数集合就不是域,因为不能做除法(即整数除整数一般不再是整数)。一个以整数为系数的多项式,或一个以有理数为系数的多项式(在解方程时,乘系数的公分母,后者就可以转换为前者),它可约,就是它可以表示为两个(不小于一次的)多项式的乘积。谈到可约、不可约时,一定要强调分解出的两个因子多项式的系数在那个域中。具体地说,就是它在有理数域是否可约,在实数域是否可约,在复数域是否可约。抽象地说一个多项式可约,不可约是没有意义的。
举几个简单例子:(i) $x^2-x-2=(x-2)(x+1)$,因此,$x^2-x-2$在有理数域可约。(ii) $x^2-2$,它在有理数域不可约,但在实数域可约:$x^2-2=(x+\sqrt{2})(x-\sqrt{2})$。(iii) $x^2+4$在实数域也不可约,但它在复数域可约:$x^2+4=(x+2i)(x-2i)$。
那么,在讨论五次方程解时,可约性应该指在那个数域中可约呢?代数基本定理说,在复数域每个$n$次方程都有$n$个根。也就是说,在复数域,每个$n$次多项式都能分解成:$(x-x_1)(x-x_2)\cdots(x-x_n)$。因此,在复数域里,任何二次及以上的多项式均可约。
由中学数学知道,实系数方程虚根成对。因此,每个五次有理系数方程至少有一个实根,即五次有理多项式在实数域都可约。因此,谈论五次有理多项式可不可约只有对有理数域才有意义。这是研究高次方程解时大家公认的事实,例如,$x^5-2$是不可约的。
1.2 什么是五次方程公式解
一个多项式方程的公式解(也称根式解),指的是方程的根是否可以用其系数通过有限多次加、减、乘、除、根式运算表示出来。(其实,这与多项式可约、不可约毫无关系。)
所谓公式解是指对任何一个方程,用同样的步骤,可以将其解表示出来。(回忆二次方程的解公式,就不难理解这一点。)因此,只要举出一个方程,它的根不能用其系数通过有限多次加、减、乘、除、根式运算表示出来,就说明这一类方程没有公式解。
“一般五次方程没有公式解”,这是一个数学上早已严格证明过的结论。它是阿贝尔最早证明的。这个结果已经被载入数学史。[1]中有这么一段话:“It was Niels Henrik Abel who finally proved (in 1827) the impossibility of solving a general equation of degree 5 or higher in terms of radicals.”(是阿贝尔在1827年最后证明了用根式解一般的五次或更高次方程是不可能的。)
1.3 伽罗华理论究竟讲了什么?
想将伽罗华理论的内容在这里讲清楚是不可能的(虽然我可以负责任地说,我对这部分内容完全掌握),但我可以将它到底讲的是什么讲清楚:对于每一个一元有理多项式,伽罗华都定义一个用来刻画这个多项式本质的东西,这个东西后来被称为伽罗华群。伽罗华理论讲的是:一个有理多项式有根式解,当且仅当它的伽罗华群可解。(这里,可解是指可分解成一列嵌套的正规子群。这超出本文范围,读者也不必细究,这不妨碍本文阅读。)
二、关于吴老先生最新结果的批判
最近,吴老先生在《任意5次不可约代数方程仅由其各系数有理运算表达的公式解》一文中称“具体给出任意5次不可约代数方程的仅由其各系数有理运算表达的公式解。”强调说是“这些解都是根本不引进任何根式,仅由其各系数的有理运算表达的公式解。”
根据吴老先生的新“理论”,一个有理系数的不可约五次方程,它的解可由有理系数经有理运算表达。有理数经过加、减、乘、除这些有理运算得到的当然是有理数。这就是说,有理系数五次(或更高次)方程的根都是有理数。任何一个学过二次方程解的中学生都不会相信这种奇谈怪论吧?
举一个简单例子,$x^5-2=0$。大家都知道,它有一个无理数根,四个复数根。这些根怎么可能用有理数来表示呢?吴老先生为什么连这么简单的方程都不能用你那“公式”算一算呢?
实际上,如果一个有理系数五次方程$P(x)=0$有一个有理数根$a$,那它就能表示成$P(x)=(x-a)Q(x)$,这里$Q(x)$是四次多项式,经比较系数就可知,$Q(x)$也是有理系数的。换言之,$P(x)$可约。因此,如果吴老先生的结论对:即,不可约有理系数五次方程有有理根(也就是有理系数经有理运算得到的根)。那么,这等于说:“不可约有理系数五次方程是可约的。”世界上还有比这个更荒谬的结论吗?
三、要以一颗真诚的心对待科学研究
一个农民,他对自己地里长的庄稼会真心相待,一个工人对自己的制作也会十分珍惜。只有这样,庄稼,产品才会给你回报。作为一个科学工作者,也应当以一颗真诚的心对待自己的科研工作。你的每一项工作,每一篇论文,都是你的产品,你的Baby,要用你的心去爱它,千万不能制造假冒伪劣的产品去骗取功名利碌。个人以为,对科研的真诚态度至少应包括以下几点:
3.1 知之为知之,不知为不知
要有实事求是的态度,知之为知之,不知为不知。不能想当然,强不知以为知。吴老先生正是犯了“想当然”的毛病。他对伽罗华理论完全不懂。伽罗华理论的核心是伽罗华群和它的可解性,吴老先生在谈到伽罗华理论时从未提及这些。
他用自己的想象代替伽罗华理论,信口开河地说:“伽罗华的理论所证明的,实际上,也只是:‘在求解n次不可约代数方程的整个过程中,所添加根式的指数,n*,应是小于4’,并非所解方程的次数,n,应是小于4,并非方程的次数n大于4就不能有根式解。”这是典型的胡说八道。以$x^5-2=0$为例,它的一个根是$\sqrt[5]{2}$。你怎么可能用根指数小于4的根式表示这个解呢?
吴老先生多次提到:“学术界似乎已公认(或说‘一般认为’)$n>4$的不可约代数方程没有根式解。”这又是一个外行的奇谈怪论。任何一个学过抽象代数的人都不会认为:“$n>4$的不可约代数方程没有根式解。”例如,$x^5-2=0$就有根式解。伽罗华理论说的是:不是所有的$n>4$的不可约代数方程都有根式解。有的有,有的没有,要看它对应的伽罗华群是否可解。
吴老先生还说:“阿贝尔没有证明,一般五次方程没有根式解。”我给你指出了[2]中就有证明。其实,我在[3]中也给出了详尽证明,它基本上是[2]中的证明。
每个人都有一个从不懂到懂的认知过程。不懂是正常的,但要实事求是,不能不懂装懂。作为一个资深学者,更不能信口开河,这样会误导年轻人。再有,我不反对挑战权威,但你首先要弄懂你挑战的对象。在一知半解,甚至连一知半解都没有的情况下,不负责任地信口雌黄,这不是科学研究,不是探索,而是哗众取宠。
3.2 要勇于承认错误,不要文过饰非
个人认为,在科研的时候,犯错误不仅是难免的,而且是一种常态。只有在不断犯错,不断纠正错误的过程中才有希望达到最后的正确的结论。但错了就要承认,不要文过饰非。
吴老先生在2011年的博文“任意n次不可约代数方程的根式解”中给出根式解法。本人先从理论上证明了它是错的,而后,在应行仁、徐晓等网友的共同下,我们用具体数值例子验证了其公式是错误的。但吴老先生不顾事实,蛮横地说:“告诉你吧,我给任意五次不可约方程根式解完全正确。”这不是一个科学家对科学讨论应有的态度。一个科学工作者要尊重事实、敬畏真理。在学术上犯错误其实并不丢脸,罔顾事实,坚持错误,这才可耻。
我有一篇文章,发在2011年IEEE TAC第一卷第一期的第一篇长文。在山大给学生讲课时,一位学生指出一个推论有问题。发现她的观点是对的,我当时确实有点失落。但我还是鼓励她写一个Comments。写好后我还帮她修改。最后这个批评我的Comments也发在TAC上了。我相信,在学术问题上,对就是对,错就是错,任何人在真理面前都没有讨价还价的余地。
3.3 正确对待科学争论
有人把所谓“程吴之争”说成是掐架,指责我“不负责任”。我不认为这是什么个人之争,而是学术讨论。我自信还是努力摆事实讲道理的。即使我对吴老先生的数学水平评价很低,但那也是我从他论文中得出的结论,是个人的评价。
有人说我数学水平低,不懂什么是代数数,什么是超越数。即使我不认可,但以为你完全有权这么讲,一点都不过分。但吴老先生对我的用词包括:“可笑”、“卑劣”、“恶劣”、“不通人性”、“学阀”、”学霸”、“耍两面派”、“不讲道理”、“胡说八道”。对此,我固然可以一笑置之,但还是以为在科学争论中这些是不宜的。
其实,在科学问题的争论中,尊重对方也就是尊重自己。
四、关于民科与民数
我开始常用“代数”或“民科”批评非专业人士,一些网友批评了我。反思之后我以为,从事科研不在于他(她)的社会地位,而在于他(她)是否以科学的态度对待科学问题。有网友提到:当年出山前的华罗庚,还有今天的佩雷尔曼,都是民数。我想,他们说的都对的。甚至最近证明了弱孪生素数猜想的张益唐,算为民数也不过分。
现在我相信,一个人只要对科学有一颗真诚的心,用科学的、实事求是的精神去探索科学真理,而不是将科研当获取名利的敲门砖,蝇营狗苟,投机取巧,他就是一名合格的科研人员。只要努力,他就会有登顶的希望!
参考文献
[1] V.J. Katz, 《数学简史》(英文版), 机械工业出版社, 2004.
[2] C.C. Pinter, A Book of Abstract Algebra, McGraw-Hill Pub., 1990.
[3] 程代展, 《系统与控制中的近代数学基础》, 清华大学出版社, 北京, 2007.
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-10-31 09:54
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社