liumingcheng的个人博客分享 http://blog.sciencenet.cn/u/liumingcheng

博文

核物质新形态的探索

已有 306 次阅读 2024-9-22 17:07 |系统分类:论文交流

5.核物质新形态的探索.docx

核物质新形态的探索

迄今为止,已发现的稳定原子核265种,60种天然放射性核,人工合成有2400种核,然而在核素图上,由中子滴落线、质子滴落线及自裂变半衰期大于1μs的限制边界内所包围的核素应有8000余种,这表明有一大半核尚未被人们认识.根据目前的情况,考虑到可能的生成与鉴别方法,估计还可能被生成或鉴别600种左右的新核素,它们是世界各地有关实验室不惜耗费重金搜索的目标.

然而,随着远离β稳定线,未知新核素的生成截面也越来越小,寿命越来越短,使分离、生成和鉴别的难度越来越大.远离稳定线原子核研究在核物理学中占有特殊重要的地位.首先,这些核素具有一系列独特的性质,例如它们的中子、质子数之比异常,有的核结合能极大,有新的衰变方式,如高能β衰变、β延迟粒子发射、β延迟衰变、表面结团结构、形状共存以及中子滴落线附近核的反常大半径等.对这些独特现象的研究,有助于检验和发展现有的原子核理论.此外,现有的核结构模型,大部分是在β稳定线附近几百种核研究基础上建立起来的,如液滴模型、独立粒子核壳层模型、核集体模型等,它们都有待在远β稳定线的原子核研究中得到检验、深化与发展.随着新核素的生成与鉴别,以及随着对它们的衰变性质及核结构的研究,会不断地有新的现象被揭示,人们对核内部的结构以及运动规律的认识也将不断地深化.此外通过对远离β稳定线原子核的研究,还可能找到某些新的同位素和核燃料,为核能与核技术的应用提供新的能源.总之,核物质新形态的研究是一个十分广阔而又值得探索的新领域,这一领域中的任何新的进展都将能推动与它有关的原子物理、天体物理、核化学以及放射化学的进展.

在核物质新形态探索中,带有重要影响的有重离子核物理、极端条件下原子核以及夸克-胶子等离子体的研究.

这是近30年来,在核物理学研究中一个十分活跃又是极具有生命力的前沿领域.在本世纪50年代以前,人们在研究原子核的结构与变化时,只是利用质量小的轻离子,如氦核、氘核、质子、中子、电子和γ射线等轰击原子核,这一研究已取得了多方面的成果.从50年代到60年代中期,随着加速粒子能力的提高,人们开始使用高能碳、氮、氧核去轰击原子核,主要进行的是弹性散射与少数核子转移反应.从60到80年代,重离子核反应开始逐步成为获得人工超钔元素的主要手段.近20年来,大约以每年发现30~40种新核素的速度发展着.1982年5月11日,美国劳仑斯-伯克利实验室(LBL)第一次成功地获得了地球上天然存在的最重元素铀的裸原子核,并将其加速到每个核子147.7MeV的能量,整个铀238离子的总能量达到35GeV.在这个能量上,离子速度达到了光速的二分之一.LBL的这一创举,不仅开创了相对论重离子物理学,而且使核物理的研究跨入一个以前无法触及的新领域,在这个新领域中,一些激动人心的奇特现象引起了物理界的高度重视.LBL得到的高能铀离子是由一台称为贝瓦莱克(Bevalac)的加速装置获得的.这台加速装置由两部分组成.一部分是高能质子同步加速器,它只能把质子加速到10亿电子伏,是40多年前建成,如今早已废弃不用的老加速器,把它配了离子源和注入器,作为第一级加速器使用;另一部分是重离子加速器.通常,重原子的内层电子由于强库仑作用,被紧紧地束缚在原子核外的内层,Bevalac先使铀原子部分电离,形成带少量正电荷的铀离子.然后,令其加速,当铀离子的速度超过核外电子的轨道速度时,使铀离子穿过某种金属膜,就会有相当多的电子被“剥离”,而形成带较多正电荷的铀离子,例如U68+.再使U68+继续加速,再使其通过聚酯树脂薄膜,得到U80+和U81+的离子混合物,最后再经过一层厚的钽膜,全部电子均被“剥”净,从而得到了绝大多数的裸铀核.

应用高能重离子可以研究核裂变的异常行为.在一般的原子核中,库仑力与核力起着相互制约的作用.若核力较强,原子核比较稳定;若库仑力较强,核就容易裂变.由于中子只参与核力作用,似乎增加中子数可保持核的稳定,然而,核力的力程极短,随着距离增加,核力急剧下降,使原子有一个极限尺寸,超过这个极限,原子核将不能束缚更多的中子.可裂变的铀核正处于核力与库仑力相抗衡的状态,它们稍微受到接触就会裂解,之后,库仑力占优势,使核裂片互相分离.在Bevalac中产生的相对论性高速铀核就可以用来研究高能下核裂变行为.果然,把高能裸核注入乳胶探测器中,通过对径迹分析发现,铀核与探测器物质原子核相撞,出现了一系列奇特现象.例如,在152个碰撞事例中,有半数事例的铀核分裂成大小相差不多的两块,另外半数事件却分裂成数块,甚至在18%的事例中,铀核被撞击粉碎,而且入射能量越高,这种粉碎的事例越多,这类事件是高能核裂变的一种反常行为.

用类氦铀原子还可以对量子电动力学(QED)进行检验.根据量子电动力学,原子体系的跃迁能量可以用一个数学式表述,这是一系列幂指数渐增的连续项求和式,其中每一项都含有原子序数和精细结构常数.过去,在把这个表述式用于氢和氦等简单原子时,由于较高阶项带来的修正在实验中不易被察觉,常被略去不计,可是对于类氦铀原子,这些高价项却起着重要作用,在这种情况下,将对QED的理论进行高阶次的检验.在高能重离子实验中,还发现了一种具有奇特性质的“畸形子”,这是一种比通常的核更容易与物质发生作用的原子核或核碎片.当它们穿透物质时,在没有到达正常深度前,就已经与物质发生了作用,所以它们在靶中的运动深度比正常核碎片浅得多.近年来的一些高能重离子实验表明,大约有3%~5%的核碎片属于畸形子.有一种说法认为,它们可能就是一种“夸克-胶子”等离子体.在这类等离子体中,中子、质子已被破坏得失去原来的特性,只剩下一团夸克和体现夸克间相互作用力的胶子.包括LBL,目前世界上共有4台高能加速器作为重离子核反应的研究基地.到1982年为止,LBL已经能加速直到铀元素的全部重离子;美国布鲁克海汶国家实验室(BNL)可以把16O、32S、192Au加速到15GeV/N(eV/N为每核子电子伏);欧洲原子核研究中心(CERN)可以把16O、32S加速到60GeV/N;美国布鲁克海汶国家实验室拟在1996年建成的相对论重离子对撞机(RHIC),投资4亿美元.它建在原本为建造质子-质子对撞机所开掘的隧道里,隧道周长3.8km.它包括两个巨大的超导磁环,最大磁场3.8T,可以使质量数小于或等于200的离子能量达到100GeV/N.它的一个重要目的就是研究在高温、高密条件下,实现普通核到夸克-胶子等离子体的相变.在今后的20年内,相对论重离子物理可望获得重要进展.



https://wap.sciencenet.cn/blog-3609997-1452176.html

上一篇:电子的自旋问题
下一篇:相对论重离子物理研究
收藏 IP: 60.217.245.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-9-27 08:55

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部