彩云之南,联大后裔——蒋金和分享 http://blog.sciencenet.cn/u/jinhejiang 崇山峻岭中的一滴露珠

博文

云师大信息学院户战选在国际权威期刊《Information Fusion》发表研究成果

已有 1509 次阅读 2024-4-27 17:31 |个人分类:云师大研究|系统分类:论文交流

近期,Elsevier 旗下top期刊《Information Fusion》在线发表了云南师范大学信息学院户战选教授团队的最新研究成果《Diverse semantic information fusion for Unsupervised Person Re-Identification》。云南师范大学信息学院为户战选教授为通讯作者,合作单位为昆明理工大学信息工程与自动化学院。

https://www.sciencedirect.com/science/article/pii/S1566253524000976?via%3Dihub

1-s2.0-S1566253524000976-ga1_lrg.jpg

Abstract

Unsupervised Person Re-Identification (Re-ID) has achieved considerable success through leveraging various approaches that rely on hard pseudo-labels. Prior work mainly focused on improving the quality of pseudo-labels or enhancing the robustness of representation learning model. However, there has been little focus on exploring the contextual semantic information, which can reveal rich relations within samples and provide complementary knowledge to assist the hard pseudo-labels. To this end, we propose a novel method named FuseDSI to explore the potential to harness diverse contextual semantic information fusion. In addition to the hard pseudo labels, FuseDSI explores additional pair-wise semantic information and neighborhood semantic information within each mini-batch through online self-exploration. Furthermore, it leverages the explored semantic information as an additional supervisory signal to enhance robust representation learning. For these two types of contextual semantic information are dynamically estimated in an online manner based on the model’s status, they complement each other well with the hard pseudo-labels. One significant advantage of FuseDSI is its flexibility in combining various pseudo-labels-based methods. Moreover, since exploring the contextual semantic information requires no external elaborate module nor memory-consuming memory bank, it maintains the structure of baseline model with negligible impact on training time. Experimental studies on two widely used person ReID benchmark datasets (MSMT17, Market-1501) demonstrate that FuseDSI consistently improves the performance of baseline model and achieves the state-of-the-art results. Code is available at: FuseDSI.

3.png

拓展阅读:

https://cic.ynnu.edu.cn/info/1012/2321.htm

云师大信息学院户战选在《Information Sciences》发表最新研究成果



https://wap.sciencenet.cn/blog-454141-1431694.html

上一篇:云师大信息学院甘健侯教授课题组在国际知名TOP期刊《人工智能的工程应用》上发表研究成果
下一篇:云师大物电学院冯小波教授在《Nano Research》发表最新研究成果
收藏 IP: 221.213.54.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (1 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2025-1-15 12:36

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部