||
2024年4月20日,Elsevier 旗下国际著名期刊《Renewable Energy》在线发表了云南师范大学能源与环境科学学院王云峰教授课题组的最新研究成果《Machine learning, mathematical modeling and 4E (energy, exergy, environmental, and economic) analysis of an indirect solar dryer for drying sweet potato》。云南师范大学能源与环境科学学院王云峰教授通讯作者,合作单位有埃及法尤姆大学(Fayoum University)、爱资哈尔大学( Al-Azhar University)、开罗大学(Cairo University)、本哈大学(Benha University)、艾因·夏姆斯大学(Ain Shams University)、阿联酋大学(United Arab EmiratesUniversity),以及中国华中农业大学(Huazhong Agricultural University)。
文章研究和分析了太阳能红薯模型烘干机的机器学习、数学建模和4E(能量、热力学平衡
、环境和经济)关系。
https://www.sciencedirect.com/science/article/pii/S0960148124006001
Abstract
A developed indirect solar dryer is built and operated to dry sweet potato cubes. Since, numerous instruments have gathered experimental data to comprehensively evaluate the system's energy, exergy, environmental, and economical aspects. Additionally, four machine learning algorithms, namely Decision Trees (DT), Gradient Boosting Regression (GBR), Multiple Linear Regression (MLR), and Random Forest (RF), are evolved to forecast the solar collector's energy () and exergy efficiency () as well as the drying chamber's mean drying temperature and exergy efficiency (). In addition, ten drying kinetics mathematical models were employed to fit with sweet potato moisture ratio variation over the experiment. Also, Color and bioactive compounds were analyzed. Results show that, and was 72.9 %, and 5.6 %, respectively. Storage unit thermal ()and exergy efficiency () were 43.4 %, and 18.4 %, respectively, the discharging lasted around 5.5 h. Theoretical drying chamber thermal efficiency () was from 21.9 to 97.2 %. And av. was 46.1 %. RF algorithm achieved the best results for , , , and forecasting, because of its superior adaptability and generalization. The overall dryer efficiency was 15 % with a specific energy consumption of 4.509 kWh/kg moisture. The Page model showed the best fitting with sweet potato moisture ratio data. In addition, CO2 mitigation reached 20.2 with earned carbon credit is 56771 RMB. The economic payback period is 29.24 months, the annual total revenue is 8464 RMB and 0.7 RMB as a Return on investment.
云师大能环学院王云峰教授等在国际知名新能源期刊《Renewable Energy》上发表最新研
云师大能环学院王云峰教授等在国际知名期刊《Energy》上发表最新研究成果
云师大能环学院王云峰教授等在国际知名新能源期刊《Renewable Energy》上发表最新研
云师大能环学院余琼粉教授在国际知名期刊《Energy Conversion and Managemen》发表最新研究成果
云师大能环学院余琼粉教授、张莹博士课题组在国际知名能源期刊《Nano Energy》发表最新研究成果
云师大能环学院李明教授课题组在国际知名储能期刊《Energy》发表最新研究成果
云师大 李明、李忠光、高伟和吴鲜思维教授入选全球前2%顶尖科学家榜单
云南师范大学李明教授课题组CEJ:低温氧等离子体对活性碳纤维进行表面改性后的样品结构性质、表面化学及水蒸气吸附的影响
李明教授课题组在Energy Conversion and Management上发表第6篇研究论文
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2025-1-15 12:18
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社