全球变化- 杨学祥工作室分享 http://blog.sciencenet.cn/u/杨学祥 吉林大学地球探测科学与技术学院退休教授,从事全球变化研究。

博文

汤加火山爆发在地球另一端引发海啸:球面点源喷发的证据

已有 2293 次阅读 2022-1-27 05:58 |个人分类:全球变化|系统分类:论文交流


   汤加火山爆发在地球另一端引发海啸:球面点源喷发的证据

                            吉林大学:杨学祥,杨冬红


       1月15日南太平洋Hunga Tonga-Hunga Ha‘apai火山爆炸的其威力可能相当于世界上最大的核弹爆炸,并引发海啸、冲击太平洋海岸线。据《科学》报道,冲击波抵达日本前约3小时,研究人员检测到了另一场小型海啸的波浪。更奇怪的是,大约在同一时间,在完全不同的海洋盆地——加勒比海探测到了10厘米高的微小海啸波浪。汤加火山爆发的冲击波拓宽了海啸研究的视野,打破了固有思维模式,让科学家知道,原来这些冲击波还能在地球的另一端引发海啸。

       汤加火山爆发在地球另一端引发海啸是球面点源喷发模式的证据。


相关报道


汤加火山爆发在地球另一端引发海啸

 作者:辛雨 来源:中国科学报 发布时间:2022/1/26 21:11:47

红外线卫星图像显示,汤加火山爆发时产生的冲击波在两个不同的海域引发了小型海啸。图片来源:马萨诸塞大学洛厄尔分校MATHEW BARLOW


       1月15日南太平洋Hunga Tonga-Hunga Ha‘apai火山爆炸的其威力可能相当于世界上最大的核弹爆炸,并引发海啸、冲击太平洋海岸线。据《科学》报道,冲击波抵达日本前约3小时,研究人员检测到了另一场小型海啸的波浪。更奇怪的是,大约在同一时间,在完全不同的海洋盆地——加勒比海探测到了10厘米高的微小海啸波浪。这到底发生了什么?

       研究人员认为只有一个合理的解释:爆炸产生惊人强大的冲击波,以接近音速的速度在世界各地“尖叫”,在太平洋和大西洋引发了海啸。美国国家海洋和大气管理局物理海洋学家Greg Dusek说,这是第一次看到火山冲击波产生自己的海啸。

       但是,美国新墨西哥大学物理学家Mark Boslough说:“这几乎肯定在过去发生过。”这一发现表明,地球历史上的爆炸性爆发和其他猛烈的灾难所产生的冲击波,如彗星或小行星与地球大气层碰撞的空气爆发,可能也会产生越洋海啸,其波浪可能要大得多。

       要制造一场典型的海啸,需要将大量的水推到一边。例如,地震中海底突然位移引发的海啸。汤加火山的喷发显然以某种或另一种形式完成了这一过程,要么是通过其水下部分的爆发,要么是火山部分坍塌,要么是新喷发的碎屑猛烈地沉积到海里。

       但是,强烈的天气事件也会造成海岸线的浪涌,即所谓的气象海啸。制造这样的压力,需要一个持续的大气扰动,伴随着巨大的压力下降或上升。空气压力波也需要以与海浪大致相同的速度移动,当这些波一起传播时,就会不断地积聚起来。

       Dusek解释,美国东海岸每年大约会发生25次气象海啸。大多数的波高只有几厘米,几乎不引人注意,也绝对没有威胁。但偶尔也会引起混乱。例如,2013年,新泽西州发生了一场2米高的气象海啸,造成3人受伤。1992年,佛罗里达州代托纳海滩发生了一起3米高的气象海啸,造成75人受伤。

       美国夏威夷大学马诺阿分校荣誉退休海啸研究员Gerard Fryer认为,汤加的冲击波海啸不是真正的气象海啸,其与天气无关。但他表示,火山爆炸确实产生了一种压力波,这种压力波与海浪向岸运动的轨迹一致,所以它基本上属于同一个物理家族。

       汤加冲击波的速度也与传统的气象海啸不同。Dusek介绍,它的速度超过300m/s,至少比通常与天气扰动有关的压力波快一个数量级。这种速度也解释了为什么这次日本出现的气象海啸比火山的经典海啸早了几个小时。

       海浪的速度受海水深度限制,海水越深海浪的速度越快。因此,如果这些海浪要跟上空气压力波并被放大,它们就需要在深水中。Dusek认为,这解释了为什么火山的气象海啸波在日本和加勒比海地区最为明显,因为它们有很深的海沟。

       汤加火山爆发的冲击波拓宽了海啸研究的视野,打破了固有思维模式,让科学家知道,原来这些冲击波还能在地球的另一端引发海啸。

https://news.sciencenet.cn/htmlnews/2022/1/473271.shtm


      汤加火山喷发的冲击波可能起源于球面的大气流动:

      研究表明,地震波在传播过程中的能量密度变化,与单位时间扩散的大圆周长C成反比。设地震的总能量为Q,能量密度为δ,穿过的面积为S=Cl = 2πRlsinφ,l为单位弧长,R为地球半径,则有
δ= Q/S = Q/ (Cl) = Q/ (2πRlsinφ)                               (1)
      其中,圆心角φ为震中和地心连线与大圆上任一点和地心连线的夹角。同样,在球壳中点源喷射造成的球面对流,也会有扩散、集中、返回的震荡过程(见图2-4)。
由(1)式可知,在φ= 0和φ= π时,能量密度δ为无穷大,在φ= π/2时,即经过地表最大圆时,能量密度δ最小。这就是说,假定地震波能量在传播中无损耗,震中的地心对称点处的能量密度最大。该公式表明,能量密度δ在震中同一半球中,随震中与地心连线的长度增加而减少;在震中的另一半球,能量密度δ随震中与地心连线延长线的长度增加而增加。
举例来说,2004年12月发生在印尼苏门答腊外海的强震,就在遥远的阿拉斯加、加州与厄瓜多尔引发了地震。厄瓜多尔(西经80,南纬0)恰恰就是印尼苏门答腊(东经100,南纬0)的地心对称点。这是一个很有说服力的解释。点源激发在球面上的震荡和对流对余震和强降水都存在激发作用(见图2和图3)。

 


 

图1  点源激发震荡在球面上的能量密度变化(杨冬红,2009)


      2003年12月23日22时左右,“重庆井喷”发生。井喷事故压井方案的实施时间从26日上午推迟到27日上午10时。整个井喷事件历时84小时,大约17.5至21百万立方米石油天然气喷入大气中,其环境效应不仅仅是硫化氢中毒。据气象部门提供的消息,2004年9月2至5日,川东北地区的达州、南充、巴中等市普降暴雨,多数地方降雨量超过100毫米,这次降雨是今年以来四川境内雨量最大、强度最强、持续时间最长的一次。其中,达州市渠县累计降雨量已超过360毫米,是百年一遇的特大暴雨。开县受灾最为严重——惨遭200年一遇特大暴雨洪灾,部分地区为500年一遇。由此看来,2003年12月23日重庆开县井喷、2004年9月2-7日重庆开县又遭受暴雨洪水的袭击、两者之间可能有因果关系(见图1-2)。
      2008年5月12日四川汶川发生8 级地震,2009年7月4日地震灾区遭遇“7.14”暴雨洪涝灾害。2013年4月20日四川雅安发生7级地震,中国气象局4月28日在例行发布会上表示,进入5月份的雅安,是全国暴雨中心,也是四川降雨最多的地方之一。7月7日晚至10日,强降雨再次侵袭四川,成都、雅安、乐山、眉山、德阳、绵阳大部及广元市西部出现了区域性暴雨,全省共有25个县(市)出现暴雨,其中有14个县(市)降了大暴雨。截至9日15时降雨量累计统计,全省4474个观测站中雨量达50~100毫米有319个站,100~250毫米有319个站,大于250毫米有71个站,强降水中心区域都江堰幸福镇、滨江街道办自动监测站大于500毫米。都江堰气象站日降水量已超过有记录以来的最大值。
      为何暴雨集中在两次地震灾区?地震-暴雨的灾害链值得关注。点源喷发导致的大气环流是合理的数学模型,能量在喷发点及其球对称点达到最大值(见图1-2)。

 

图2  点源喷发在球壳中的全球对流(杨冬红,2009)

   潮汐震荡的特点是,在地球和月亮的中心连线上,面对月亮的地球球面上的点及其地心对称点的潮汐最大,与点源激发在球面上的震荡特征相同。这是潮汐易于激发地震活动的一个原因。地震火山活动造成的地球排气,根据其震级的大小,可造成局部的或全球的大气循环。地震后的喷气增大影响范围,伴随气流在球面的传播和返回,可带来暖湿气流形成强降雨。

http://blog.sciencenet.cn/blog-2277-706892.html
http://blog.sciencenet.cn/blog-2277-711859.html
http://blog.sciencenet.cn/blog-2277-306746.html

     汤加火山爆发在地球另一端引发海啸是球面点源喷发模式的证据。

问鼎球面大气、海洋、和地壳传递能量的方式和特征 

目前有关大气、海洋和地壳的能量传递模型都是建立在平面模型之上,事实上,地球是一个球体,地球表面的大气、海洋和固体地壳都是是一个球面,球面模型能更准确地反映暴风雪、海啸和地震远距离传播的方式和特征。

研究表明,点源激发的球面大气、海洋和固体地壳震荡在传播过程中的能量密度变化,与单位时间扩散的大圆周长C成反比。设总能量为Q,能量密度为δ,穿过的面积为S=Cl = 2πRlsinφ,l为单位弧长,R为地球半径,φ为圆心角。则有

δ= Q/S = Q/ (Cl) = Q/ (2πRlsinφ)                               (1)

其中,圆心角φ为点源和地心连线与大圆上任一点和地心连线的夹角。同样,在球壳中点源喷射造成的球面对流,也会有扩散、集中、返回的震荡过程(见图5)。


图1  点源激发的大气流动、海洋震荡和地震波传播在球面上的能量密度变化(杨冬红,2009)

由(1)式可知,在φ= 0和φπ时,能量密度δ为无穷大,在φπ/2时,即经过地表最大圆时,能量密度δ最小。这就是说,假定大气流动总能量在传播中无损耗,点源及其地心对称点处的能量密度最大(杨冬红, 2009)。

这一模型既可以解释北极大气和海洋等位面下降导致北半球低温暴雪频发和南极大陆沿海异常变暖(通过海冰气候开关效应阻止拉尼娜的发生,使拉尼娜可能夭折),也可以解释震洪链、旱涝链和高温暴雨链的发生原因。同样,这一模型可以解释海啸波动为什么在地震球面对称点的能量最大。

2003122322时左右,“重庆开县井喷”发生,历时84小时,大约17.521百万立方米石油天然气喷入大气中;2004925日,开县惨遭200年一遇特大暴雨洪灾,部分地区为500年一遇。2008512四川汶川发生级地震;200974地震灾区遭遇“7.14暴雨洪涝灾害。2013420四川雅安发生7级地震;77晚至10日,强降雨侵袭四川,成都、雅安、乐山、眉山、德阳、绵阳大部及广元市西部出现了区域性暴雨,都江堰气象站日降水量已超过有记录以来的最大值。20138614时,在全国2418个国家级自动监测站中,高温排行前十名全部超过40,其中,浙江8个地区榜上有名,浙江余姚的气温更是达到了42.12013109),在福建登陆的台风“菲特”,却让浙江东部的余姚受遭受了百年一遇的降雨,70%以上城区受淹,主城区城市交通瘫痪。受灾人口超过83万人。点源喷发导致的大气环流是合理的数学模型,能量在喷发点及其球对称点达到最大值(见图2)。

地球赤道圈的周长为4万公里,地震对称点相距2万公里。北纬49°为美国、加拿大国境线,是卡斯卡迪亚俯冲带的中心。其球面对称点在南纬49°的大西洋上。由于大陆和海岛的阻隔,地震引发的海啸被日本列岛和南太平洋诸岛阻挡,形成了跨越千里的特大灾害事件。日本在卡斯卡迪亚俯冲带的同一半球内,海啸能量和高度不是最大的,在球面波的运动中处于能量的扩散状态,并在1万公里处达到最小值。图展示的7500-8000公里距离表明,本次海啸的规模远远小于1960年的智利地震。

1960522,智利中部太平洋深海沟发生里氏8.3级大地震,产生最大浪高25的大海啸,海浪以640千米/时的速度横扫太平洋,造成1万多人遇难,沉船几千艘,这是世界上影响范围最广的地震海啸之一。日本也位列其中。因为智利和日本分属于两个半球,智利地震中心位于3..2°S76.6°W,日本东京位于北纬35°69′—东经139°69′。两者接近为球面对称点,并有连续的海洋链接,达到最远距离(大约为日本到北美地震中心距离的2倍,15000-16000公里)

2018年11月8日以来的加州山火可以作为一个典型的点源能量喷发,所形成的大气对流如图2a。山火热流上升到高层,并流向球面对称点,变冷后在低层流回美国,导致极地冷空气趁势而入,冷暖空气交汇,形成美国东北部的暴风雪。加州山火是这场气象灾害产生的动力。这样的大气对流也可以根据能量大小,形成图2b的半球循环。


点源喷发在全球壳a和半球壳b中的对流(杨冬红,2009

    

    美国加州山火后将有强降雨 或引发泥石流:再次验证点源喷发的球面数学模型。       

  

相关文献

 

1. 杨冬红,杨学祥,刘财。20041226印尼地震海啸与全球低温[J]。地球物理学进展。2006213):10231027

Yang Donghong,Yang Xxuexiang, Liu Cai. Global low temperature, earthquake and tsunami (Dec. 26, 2004) inIndonesia[J].Progress in Geophysics, 2006, 213: 10231027.

2. 杨冬红,杨德彬,杨学祥. 2011. 地震和潮汐对气候波动变化的影响[J]. 地球物理学报, 544):926-934

Yang D H,Yang D B, Yang X X, The influence oftidesandearthquakes in globalclimatechanges. Chinese Journal of geophysics (in Chinese),2011, 54(4): 926-934

3. 杨冬红,杨学祥。全球变暖减速与郭增建的“海震调温假说”。地球物理学进展。200823 (6): 18131818YANG Dong-hong, YANGXue-xiang. The hypothesis of the ocesnic earthquakes adjusting climate slowdownof global warming. Progress in Geophysics. 2008, 23 (6): 18131818.

4. 杨冬红杨学祥北半球冰盖融化与北半球低温暴雪的相关性[J]. 地球物理学进展, 2014, 29(2):610-615. YANG Dong-hong, YANG Xue-xiang. Studyon the relation between ice sheets melting and low temperature in NorthernHemisphere. Progress in Geophysics. 2014, 29 (1): 610615.

5. 杨冬红,杨德彬,杨学祥。地震和潮汐对气候波动变化的影响。地球物理学报。2011544):926-934. Yang D H,Yang D B, Yang X X, The influence of tides and earthquakes in global climatechanges. Chinese Journal of geophysics(in Chinese), 2011, 54(4): 926-934

6.  杨冬红,杨学祥全球气候变化的成因初探地球物理学进展. 2013, 28(4): 1666-1677. Yang X X, Chen D Y. Study oncause of formation in Earths climatic changes. Progress in Geophysics (inChinese), 2013, 28(4): 1666-1677.

7. 杨冬红. 2009. 潮汐周期性及其在灾害预测中应用[D][博士论文].长春:吉林大学地球探测科学与技术学院.

Yang Dong-hong. 2009.Tidal Periodicity and its Application in Disasters Prediction[D]. [Ph. D.thesis]. ChangchunCollege of Geo-exploration Science and Technology, Jilin   University.

8. 杨冬红杨学祥.2013.a 地球自转速度变化规律的研究和计算模型地球物理学进展, 281):58-70

Yang D H, Yang XX. 2013a. Study and model on variation ofEarths Rotation speed. Progress inGeophysics (in Chinese), 281):58-70.

http://blog.sciencenet.cn/blog-2277-1146733.html 

https://blog.sciencenet.cn/blog-2277-1146905.html




https://wap.sciencenet.cn/blog-2277-1322858.html

上一篇:汤加火山喷发,“火山冬天”或将到来:加剧2023-2025年气候变冷
下一篇:长白山喷发进入倒计时?日本教授称概率99%:过于夸张
收藏 IP: 103.57.12.*| 热度|

2 许培扬 周少祥

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2025-1-11 05:08

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部