||
摘要: 高度信息化的网格化城市管理可以为出租车运营优化提供新的实时动态乘客需求信息和车辆位置信息。以此为契机,针对城市出租车空驶率高和司乘匹配率低的问题,提出了一种网格化的出租车实时动态调度的增强学习控制方法。通过为出租车提供空驶巡游的动态最佳路线,新的控制方法旨在提高出租车的服务效率,并降低乘客的等待时间。首先,以城市单元网格为基础,明确出租车调度的关键问题;其次,以空驶路线的动态调整为控制手段,建立调度的增强学习模型;最后,给出求解模型的Q学习算法,并通过算例验证新调度方法的有效性。研究表明新方法可以有效提高司乘匹配率、增加总的出租车运营收入、减少乘客平均等车时间和总的出租车空驶时间。
关键词: 城市交通;出租车调度;增强学习;网格化管理;自适应式控制
论文附件:
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2025-1-15 21:49
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社