大工至善|大学至真分享 http://blog.sciencenet.cn/u/lcj2212916

博文

[转载]【计算机科学】【2020.05】【含源码】基于GO语言的深度学习

已有 2772 次阅读 2021-9-3 22:24 |系统分类:科研笔记|文章来源:转载

图片


本文为美国普渡大学(作者:Derek L. Stinson)的硕士论文,共66页。

 

目前深度学习的研究主要集中在使用Python作为支持语言上。Go是一种新兴的语言,它有许多优点,包括对并发的本地支持,在过去几年中,它的采用率有所上升。然而,由于缺乏模型开发的支持库和框架,这种语言并没有被广泛用于开发学习模型。在本论文中,利用Go进行神经网络模型的一般开发和卷积神经网络的研究。这项研究是基于一个称为GoCuNets神经网络模型的Go-CUDA实现,然后将这个实现与GO-CPU深度学习实现进行比较,后者利用了Go内置的ConvNetGo并发性。对这两种实现方式的比较表明,与ConvNetGo相比,使用GoCuNets时的性能显著提高。

 

Current research in deep learning isprimarily focused on using Python as a support language. Go, an emerginglanguage, that has many benefits including native support for concurrency hasseen a rise in adoption over the past few years. However, this language is notwidely used to develop learning models due to the lack of supporting librariesand frameworks for model development. In this thesis, the use of Go for thedevelopment of neural network models in general and convolution neural networksis explored. The proposed study is based on a Go-CUDA implementation of neuralnetwork models called GoCuNets. This implementation is then compared to aGo-CPU deep learning implementation that takes advantage of Gos built in concurrency calledConvNetGo. A comparison of these two implementations shows a significantperformance gain when using GoCuNets compared to ConvNetGo.

 

1.       引言

2. 相关工作

3. 研究方法

4. 结果

5. 结论

附录AConvNetGo

附录BGoCuNets

附录CGoCudnn



更多精彩文章请关注公众号:205328s611i1aqxbbgxv19.jpg




https://wap.sciencenet.cn/blog-69686-1302759.html

上一篇:[转载]【信息技术】【2003】高质量音频信号的分析与编码
下一篇:【课件】分享一份嵌入式系统及应用(中断)的课件,欢迎批评指正
收藏 IP: 111.38.175.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2025-1-15 12:36

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部