||
[注:下文是群邮件的内容。]
《Galois cohomology》 少一点思考就多一点效率 ~ * * * 9:50 Let K'1/K1 and K'2/K2 be two Galois extensions, with Galois groups G1 and G2. ---- 取两个 Galois 扩展,及对应的 Galois 群. . Assume we are given an injection K1 -i-> K2. ---- 考虑 K1 和 K2 之间的单射. . Let us suppose that there exists an injection K'1 -j-> K'2 which extents the inclusion i. ---- 假定 K'1 和 K'2 之间存在单射,它扩展 i. . Using j, we get a homomorphism G2 --> G1 and a morphism A(K'1) --> A(K'2);... ---- 利用 j, 可得到 同态 G2 --> G1 (?) 和 态射 A(K'1) --> A(K'2);... . ... these two maps are compatible, and define maps H^q(G1, A(K'1)) --> H^q(G2, A(K'2));... ---- 此二映射相容,并定义映射 H^q(G1, A(K'1)) --> H^q(G2, A(K'2)). 注:后一个 “maps” 也是复数 (q 值不只一个). . ... these maps do not depend on the choice of j (cf. [145], p. 164). ---- 这些映射不依赖于 j 的选择. . Thus we have maps H^q(K'1/K1, A) --> H^q(K'2/K2, A) which depend only on i (and on the existence of j). ---- 总之有映射 H^q(K'1/K1, A) --> H^q(K'2/K2, A) 并且只依赖于 i (及 j 的存在). . 评论:有了 Galois cohomology,就该考虑它们之间的映射.(正如有了集合,就该考虑他们之间的映射那样) . 小结:引入了映射 H^q(K'1/K1, A) --> H^q(K'2/K2, A). * * * 10:40 |
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2025-1-3 16:42
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社