||
[注:下文是群邮件的内容。]
《Galois cohomology》 在“待定”学习法中学习者不必理解每个知识点,正如在代数运算中允许存在未知元那样. * * * 15:20 Remarks. 1) If ks denotes a separable closure of k, the group A(ks) is well-defined, and it is a Gal(ks/k)-group. ---- 若 ks 是 k 的可分闭包,则 群 A(ks) 有定义,并且它是 Gal(ks/k)-群. . 评论:给出了一个特例 A(ks) = Gal(ks/k). ---- 自己作用于自己,仍然是自己. ---- 这是 函子(或 Galois 群) 本身是 Galois cohomology 的例子. . 哲学:对于一般的形式 (X, B) 可尝试找 X = B 的例子. . To know it is the same as knowing the functor A (up to an isomorphism of functors). ---- 知道它与知道函子 A 是一样的 (同构). ---- “it” 指什么? ---- 应该是指上述 群A 作为 函子A. . 2) It is often the case that the functor A can be defined for all extensions of k (not necessarily algebraic nor seperable), and in such a way as to verify (1), (2), and (3). ---- 函子A 可以对 k 的所有扩展 (不必代数的或可分的) 给出定义,并且符合三条公理. ---- 强调了定义函子A 的自由度. . The most important example is that of “group schemes”: if A is a group scheme over k, locally of finite type, the points of A with values in an extension K/k form a group A(K) which depends functorially on K, and this functor verifies the axioms (1), (2), and (3) [axiom (1) follows from A being locally of finite type]. ---- k 上的群概型 A 可形成 群A(K) 此函子符合三条公理. ---- 群概型A 是局部有限型的(从而符合公理(1)). ---- 群A(K) 泛函地依赖于 K. . 疑问:“the points of A with values in an extension K/k...” ---- 这半句意思不清楚 (?) . This applies in particular to “algebraic groups”,that is,to group schemes of finite type over k. ---- 这对于 “代数群” 尤其适用. ---- 代数群即 k 之上的有限概型. . 小结:给出了两类 (三种) 典型的例子. * * * ?? |
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2025-1-3 16:40
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社