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Abstract - In this paper, we present a first linear 
programming formulation of the Quadratic Assignment 
Problem (QAP). The proposed linear program is a 
network flow-based model with 0(n9) variables and 0(n7) 
constraints, where n is the number of assignments. 
Hence, it provides for the solution of the QAP in  
polynomial-time and represents therefore, a proof of the 
equality of the computational complexity classes P and 
NP. Computational testing and results are discussed. 

Index Terms - Linear Programming; Combinatorial 
Optimization, Quadratic Assignment Problem, Facility 
Location, Facility Layout, Computational Complexity, 
lnteger Programming. 

The Quadratic Assignment Problem (QAP) is the problem of 
making exclusive assignments of n indivisible entities to n 
other indivisible entities in such a way that a total quadratic 
interaction cost is minimized. The problem can be interpreted 
from a wide variety of perspectives. The perspective we 
adopt in this paper is that of the generic facilities 
locationllayout context, as in the seminal work of Koopmans 
and Beckmann [ I ] .  Specifically, there are n facilities (or 
departments) to be located at n possible sites (or locations). 
The volume of traffic going from facility i to facility is denoted 
fij. The travel distance from site r to site s is denoted drs. A 
quadratic "material handling" cost of hirjs = (f,jd,s + fjlds,) is 
incurred if facilities i and j are assigned to sites r and s, 
respectively. In addition, there is a fixed cost (an "operating 
cost"), o,,, associated with operating facility i at.site r. It is 
assumed (without loss of generality) that the units for 
"distance", "volume of traffic", and "operating cost" have been 
chosen so that the hirjsls and oi,'s are commensurable. The 
problem is that of finding a perfect matching of the facilities 
and sites so that the total material handling and facilities 
operating costs is minimized. 

Let F = { 1 , 2 ,  ..., I ~ I ) a n d S = { 1 , 2 ,  ...,  IS^) bethesets 
of facilities and sites, respectively. Without loss of generality, 
assume ( F  I = 1 S I = n. For i E F and r E S, let wir be a 011 
binary variable that indicates whether facility i is assigned to 
(or located at) site r (w,, = I ) ,  or not (w,, = 0). Then, a 
classical formulation of the QAP is as follows: 

Problem QAP was shown to be NP-Hard as far back as 
the 1970's (see [Z]). Moreover, it has been known for some 
time that the Traveling Salesman Problem (see [3]) and other 
NP-complete combinatorial optimization problems (see [4], 
[5], or [6]) can be modeled as special cases of the problem. 
Hence, the thrust of research on the problem has been 
towards the development of heuristic procedures and "tight" 
lower bounds (see [7], [8], and [9] for reviews). 

In this 'paper, we present a first linear programming 
formulation of the Quadratic Assignment Problem (QAP). The 
proposed linear program is a network flow-based model with 
0(n9) variables and 0(n7) constraints, where n is the number 
of assignments. Hence, it provides for the solution of the QAP 
in 'polynomial-time and represents therefore, a proof of the 
equality of the computational complexity classes P and NP. 
Computational testing and results are discussed. 

The plan of the paper is as follows. We develop the 
proposed linear programming formulation in section 2. 
Computational testing and results are discussed in section 3. 
Conclusions are discussed in section 4. 

11. DEVELOPMENT OF THE FORMULATION 

In this section, we first develop a network flow-based lnteger 
Linear Programming (ILP) formulation of the QAP. Then, we 
discuss the development of our Linear Programming (LP) 
formulation. 

2.1 lnteger Linear Programming Model 
The basic idea of our modeling is to express the polytope 
associated with Problem QAP in terms of higher-dimensional 
variables in such a way that the quadratic cost function of 
Problem QAP is correctly captured using a linear function. 
Note that this polytope (i.e., the polytope associated with 
Problem QAP) is the standard assignment polytope (see [lo], 
or [ I  I ] ) .  To reformulate this polytope we use the framework of 
the multipartite graph G = (V, A) illustrated in Figure 1.1, 
where the nodes in V correspond to (facility, site) pairs, and 
the arcs in A correspond to binary variables x,~, = w~~w, ,~+ ,  ((i, 
j) E F'; r E S\{n)). Clearly, there is a one-to-one 
correspondence between feasible solutions to Problem QAP 

Problem QAP: 

Minimize 

ZQAP(W) = 11 1 1 hirjswirw js + 1 C o i r ~ i r  
ikF jtFreSseS ieF reS 

Subject to: 
l w i r  = 1 r e  S 
IEF 

Cwir  = 1 ~ E F  
reS 

(i.e., perfect matchings of the facilities and sites) and paths in 
Graph G that simultaneously span the set of facilities and the 

(1.1) 
set of sites of the graph, respectively. Hence, we refer to 
such paths as "perfect bipartite matching (p.b.m.) paths." Our 
reformulation approach consists of developing constraints 

(1.2) that "force" flow propagation in Graph G to occur along p.b.m. 
paths of the graph only. In order to simplify the presentation, 

(1.3) we refer to the set of all the nodes of the graph that have a 



flow on (i, r, j) given facility index in common as a "level" of the graph and to 
the set of all the nodes of the graph that have a given site 
index in common as a "stage" of the graph. 

Figure 1.1: Network Sub-structure of Problem ILP 

Our proposed overall model is a more general form of that 
developed in [12]. Define R I S\{n) . For (i, j, k, t, u, v) E 

F=, (p, r, s) E R~ such that p < r < s, let zUpvirjkst be a 011 
binary variable that takes on the value "1" if and only if the 
flow on arc (u, p, v) of Graph G subsequently flows on arcs (i, 
r, j) and (k, s, t), respectively. Similarly, for (i, j, k, t) E F4, (r, S) 
E R' such that s > r, let yirjkst be a binary variable that 
indicates whether the flow on arc (i, r, j) subsequently flows 
on arc (k, s, t) (yirjkst = 1) or not ( yirJkst = 0). Finally, denote 
by y,ilrj the binary variable that indicates whether there is 
flow on arc (i, r, j) of Graph G or not. Given an instance, (y, 
z), of these decision variables, we use the term "flow layet" to 
refer to the sub-graph of G induced by the arc (i, r, j) 
corresponding to a given positive component, yirjirj, of (y) and 
the corresponding arcs (k, s, t) (s E R, s > r) such that yirjkst 
> 0. Hence, the flow on arc (i, r, j) also flows on arc (k, s, t) 
(for a given s > r) iff arc (k, s, t) belongs to the flow layer 
originating from arc ( i ,  r, j). Also, we say that flow on a given 
arc (i, r, j) of Graph G "visits" a given level of the graph, say 
level t, if: 

2 C ytskirj + C 1 Y irjkst > O 
scR; ssr-1 ke(F\(i, j, 1 ) )  seR; s x + l  ke(F\{i, j, 1)) 

(2.1) 

Logical constraints of our model are that: 1) flow must be 
conserved; 2) flow must be connected; and, 3) flow layers 
must be consistent with one another. By "consistency" of the 
flow layers, we are referring to the requirement that any flow 
layer originating from a given arc (i, r, j) with r 2 2 must be a 
subgraph of one or more flow layers originating from a set of 
arcs at any other given stage preceding r. More specifically, 
consider the arc (i, r, j) corresponding to a given positive 
component of (y) ,  yirjirj 5 0. For s < r (s E R), define Fs(i, r, j) 
= {(k. t) E F' I Ykstin > 01 . Then, by uconsistency of flow 
layers" we are referring to the condition that the flow layer 
originating from arc (i, r, j) must be a sub-graph of the union 
of the flow layers originating from the arcs comprising each of 
the Fs(i, r, j)'s, respectively. In addition to the logical 
constraints, the bipartite matching constraints 1.2 and 1.3 of 
Problem QAP must be respectively enforced. These ideas 
are developed in the following. 
1) Now Conservations: 

All flows through Graph G must be initiated at stage 1; 
Also, for (i, j) E F', r E (R \ {I}), the flow on arc (i, r, j) must be 
equal to the sum of the flows from stage 1 that subsequently 

Yirjirj - C C ~ ~ , l , ~ i ~ ~  =O; i, j E F; r E R, r 2 2 
ucFvcF 

(2.3) 

2) Flow Connectivities: 
All flows must propagate through the graph, from stage 1 

on to stage n, in a connected manner; Each flow layer must 
be a connected graph and must conserve flow. 

C Y i,r-l,ji,r-l,j - C Y jrijri = 0 ; r E R, r 2 2; j E F 
ieF ieF 

(2.4) 

r, s E R, r 5 n-2, r s s 5 n-2 (2.5) 
3) Consistency of "Flow Layers:" 

For r, s E R, r < S, flow on (i, r, j) subsequently flows onto 
(k, s, t) iff for each p < r (p E R) there exists at least one palr 
(u, v) E F2 such'that flow from (u, p, v) propagates onto (k, s, 
t) via (i, r, j). This results in the following three types of 
constraints: 

i) Layering Constraints A 

Yupvirj - C C Zupvirjkst = 0 ; U, V, i, j E F; 
keF teF 

p, r, s E R, 2 5 r 5 n-2; p 5 r-I; s 2 r+ l  (2.6) 

ii) Layering Constraints 6 

Yirjkst = 1 C Zupvlrjkst = 0 ; U, V, i, j E F; 
ucF vcF 

p, r, s E R, 2 <_ r 5 n-2;p 5 r - I ;  s 2 r+ l  (2.7) 

iii) Layering Constraints C 

4) "Visit" Requirements: 

Flow within any layer of Graph G must visit every level of 
the graph. 

YU,~ ,VU.~ .V  - C C ~ ~ . l , ~ k ~ t  = 0 ; 
s c R ; s l Z  ~ E F  

u, v E M; t E F\{i, j) (2.9) 

u l v ~ r  - 1 Czu,l ,vlsklrJ - C Czu, l ,v~r lks t  = O  ; 
seR, s<r-1 keF stR, s>r+l ~ G F  

r E R\{I); U, v, i, j E F; t E (F \ {u, v, i, j)) (2 10) 

5) "Visit" Restrictions: 
Flow must be connected with respect to the stages of 

Graph G; There can be no flow between nodes belonging to 
the same level of the graph; No level of the graph can be 
visited at more than one stage, and vice versa. 

C 1 C y irjksl + C Yirjkrl + 

SER; s<r ~ E F  ~ E F  ( k . t )~~~ l ( k . t ) t ( i , j )  

+ C C CykstJr j  = 0; i , j  E F; r E R (2.1 1) 
seR k e F  teF 

Note that constraints 1.2 of Problem QAP are enforced 
through the combination of the "Flow Connectivities" 
requirements and the "Visit Restrictions" constraints, and that 



constraints 1.3 are enforced through the "Visit ~e~u i rements "  
constraints. 

Let cirj ((i, j) E F'; r E R) be defined as: 

I Oir + fijdr,r+l + fj,dr+l,r 

for ~ E R ,  r < n - 2 ; i ~ F ,  j ~ F \ { i }  

[co, otherwise 

Then, our integer linear programming model can be stated as 
follows: 

Problem ILP: 
Minimize 

ZIP(Y, Z) = C C C 1 C C hirt .s+l~i r jkst  + 

isF rc(R\(n-1)) t€F seR;s>r jeF k€F 

Subject to: 

Constraints 2.2 - 2.1 1 

Yirjkstv Zupvlrjkst E {O,I) , j, k. f, U, v E F; P, r, s E R (2.14) 

We formally establish the equivalence between Problem 
ILP and Problem QAP in the following proposition, the proof 
of which is given in [13]. 

Proposition 1 
Problem ILP and Problem QAP are equivalent. 

Hence, each feasible solution to Problem ILP corresponds 
to a perfect bipartite matching solution of Problem QAP, and 
therefore, to a p.b.m. path in Graph G, and conversely. Let 
cp(e) = {el, e,,..., en-, , en )  denote the ordered set of facility 
indices corresponding to a given perfect matching, e , of the 

facilities and sites (i.e., with e t  as the index of the facility 
assigned to site t according to 1' ) . In the remainder of this 
paper, we will use the term "feasible solution corresponding 
to ((Given) Perfect Matching) e" to refer to the vector 
(Y((P(e)), ~ ( ~ ( e ) ) )  obtained as follows: 

[I f o r r , s ~ R ,  sZ r ;  

1 0  otherwise 

1 for p. r. s E R, p c r c S: 

(a, b, c,d,e,f) = 

(Z((P(e)))apbcrdesf I ep+lp  er, er,l, Ps, !,+I); 
(2.16) 

[O otherwise 

The following proposition gives some further 
characterization of the feasible set of Problem ILP (The proof 
is given in [ I  31). 

Proposition 2 

The following constraints are valid for Problem ILP: 

i) yirjiri - C 1 ykstirj = 0 i, j E F; r, s E R, 
k€F t€F 

r r 2 ,  s < r - I  (2.17) 

2.2 Linear Programming Model 
Our overall linear programming model consists of the linear 
programming (LP) relaxation of Problem ILP. This problem 
can be stated as follows: 

Problem : 

Minimize 

C C Cclr,~,rj,rj 
IEF r r R  jaF 

Subject to: 

Constraints 2.2 - 2.1 1 

0 5 Yirjkstv Zupvirjkst 1 ; U. V, i, j, k, f E F; P, r, s E R (2.26) 

For a feasible solution (y, z) = (yirjkst, Zupvirjkst) to 
Problem TP, let G(y, z) = (V(y, z), A(y, z)) be the sub-graph 
of G induced by the arcs of Graph G corresponding to the 
positive components of (y). For r E R, define Xr(y, z) = {(i, j) 
E F' 1 {(i, r, j) E A(y, 2)). Denote the arc corresponding to 
the vth component of X,(y, z) (v E {I, 2. ..., xr(y, z)); 
15 x ~ ( Y ,  z) 5 n(n -1)) as ar,,(y, z) = (ir,vt r, jr,v) . Then 
Xr(y, z) can be alternatively represented as Xr(y, z) = 

{(i,,,, r, j,,,); v E Nr(yv z)), where N,(Y, z)= (1, 2, ..., xr(y, z)) 
is the index set for the arcs of Graph G(y, z) originating at 
stage r. 

We have the following. 

Proposition 3 

Let (y, z) = ( yisjkrt , Zupvirjk,, ) be a feasible solution to 

Problem TP . For (r, s) E R' , s > r; r E Nr (y, z) ; and p E 

N, (y, z) ; if y,, ,,r,,, T , i  ,,,,, s, ,, > 0, then, there must exist at least 

one sequence of arcs of G(y, z), 

Prsr(Y1z) - {ar,rv a r + l , v , + , , ~ . ~  as l v  ,-,, vas,p(Vq,t 'Nq(~1z); 

~ E R ,  r + I < q S s - I  ), 
such that: 

- 
i) q+,vql,, - j V q  for q E R; r s q s s 

> 0 for p, q E R; ii) Yip,\.p 'P'ip."p,, .iq.vq,' Iq.,q."q,, 

r 5 p S s-I; p+ l  5 q 5 s 



where vr,, = r , and v,,, = p . 

Proof: 

i) Condition i) follows from the flow conservation and flow 
connectivity requirements stipulated by constraints 2.2 - 
2.5; 

ii) Condition ii) follows from condition i), constraints 2.17 - 
2.21, and the visit requirements constraints 2.9 - 2.10; 

iii) Condition iii) follows from the combination of condition ii) 
and the visit restrictions constraints 2.1 1. 

Q.E.D. 

We say that a set of arcs of G(y, z), 

4 ( ~ , z ) = { a ~ , , ~ ~ ,  ..., an-l ,,"- l t l  vr,t E N , (y .z ) , r~R) ,  is a "path 
- in (y, z)" if ir+,,v,+l,t - j, ,,,,t for all r E R . Hence, a path in (y, 

z) can be alternatively represented as an ordered set of 
facility indices, 4 (Y, Z) - - 

( i i . v l , t ~ i ~ . v 2 , 1 ~ . . ~ ~ i n , v , t )  Vr.tENr(~vz), r ER; and in,vn,, =jn-i,, "-,, l) 

. We will henceforth use this alternative representation for 
convenience. We refer to a given path in (y, z), L, (y, z), as 

"layered" if it satisfies conditions i)-iii) of Proposition 3 above. 
To a path in (y, z), 4 (y, z), we attach a "flow value" 

hl,,vl,l ,i2,i2, , t  (Y 9 Z) defined as: 

A set of paths in (y, z), r = {PI, P, ..., P,) with 

associated set of arc sets in G, {a, , a,, ..., a,) (where a, 
- - {a, ,,,, ; (r, v,,,) E (R, Nr (y, z)) ), for k = 1, . . .. m), is said to 

"cover" (y, z) if U,,k,,(ak) = A(y, z) . Moreover, if r 
covers (Y, 2) with Y ~ r j ~ r j  = C k l  ,) ak ~ I , , ~ ~ , I ~ ~ ~ ~ .  (Y ,  Z) for all 4, 
r, j) E A(y, z) , then, we say that (y, z) "consists of' r Note 

that hl,llt , 1 2 1 2 t  ,, (y, Z) > 0 iff Path L, (y, z) IS layered as 

described above, that each layered path in (y, z) is a p.b.m. 
path of Graph G, and that the feasible solution corresponding 
to a given p.b.m. path of Graph G is a layered path in (y, z). 

We will establish the equivalence between Problem - 
ILP and Problem QAP in the remainder of this section. 

Proposition 4 
Let (y, z) = ( yirjkst , zupvirjkst ) be a feasible solution to Problem 
- 

ILP . Then, there exists a set, n(y,  z), of perfect matchings 
of the facilities and sites, such that (y, z) is a convex 
combination of feasible solutions corresponding to the 
matchings in n(y, z). 
Proof 
Constraints 2.3 combined with Proposition 3 imply that there 
exists a set of layered paths in (y, z) that covers (y, 2). It 
follows from the correspondence of a given layered path in 
(y, z) to a unique perfect matching of the facilities and sites, 
and the fact that a given perfect matching of facilities and 
sites cannot be represented as a convex combination of other 
perfect matchings of facilities and sites, that (y, z) must 
consist of such a set of pafhs in (y, z). The proposition follows 
directly from this. 

Proposition 5 
The following statements are true of basic feasible solutions 
(BFS) of Problem TP and perfect matchings of the facilities 
and sites: 
1) Every BFS of Problem ILP corresponds to a perfect 

matching of the facilities and sites; 
2) Every perfect matching of the facilities and sites 

corresponds to a BFS of Problem ILP ; 
3) The mapping of BFS's of Problem ILP onto the set of 

perfect matchings of the facilities and sites is surjective. 
Proof: 
1) Correspondence of a BFS of Problem ILP to a perfect 

matching of the facilities and sites follows from the fact 
that every perfect matching of the facilities and sites 
corresponds to a feasible solution to Problem ILP 
(Proposition I ) ,  the fact that every feasible solution to 
Problem ILP correspond to a convex combination of 
perfect matching of the facilities and sites (Proposition 4), 
and the fact that a BFS cannot be a convex combination 
of other of other feasible solutions; 

2) Correspondence of a perfect matching of the facilities and 
sites to a BFS of Problem follows from Proposition 1, 
Proposition 4, and the fact that a given perfect matching 
of the facilities and sites cannot be represented as a 
convex combination of other perfect matching of the 
facilities and sites; 

3) The surjective nature of the "BFS's-to-perfect matching of 
the facilities and sites" mapping follows from the primal 
degeneracy of Problem G. 

Q.E.D. 

Corollary 1 
Problem ILP and Problem ILP (and therefore, Problem 
QAP) are equivalent. 
Proof 
The proof follows directly from Proposition 5. 
Q.E.D. 

Corollary 2 
Computational complexity classes P and NP are equal. 
Proof: 
First, note that Problem has 0(n9) variables and 0(n7) 
constraints. Hence, it can be explicitly stated in polynomial 
time. The proposition follows directly from this, the NP- 
Completeness of the QAP decision problem (see [2], and [4]), 
Corollary 1, and the fact that an explicitly-stated instance of 
Problem ILP can be solved in polynomial-time (see 1141, and 

[ I  51). 
Q.E.D. 

Because of the very-large-scale nature of Problem , we 
implemented a streamlined version of it whete constraints 
2.1 1 and the variables they restrict to zero were not explicitly 
considered, and constraints 2.26 were re-written as simple 
non-negativity constraints (since the upper bounds on the 



yirjkst and zuPvirjkst variables in those constraints are 
redundant). 

In order to get some idea about the computational 
performance of our proposed model, we solved 10 randomly- 
generated 6-facility problems. For each of these problems, 
the inter-facility traffic volumes were assumed to be uniform 
random numbers between 10 and 250, and the inter-site 
distances were assumed to be uniform random numbers 
between 1 and 30. The facility operating costs were assumed 
to be zero in five of the problems, and assumed to be random 
deviates on [O, 50001 for the remainder five problems. In 
addition to the randomly-generated problems, we also solved 
one problem where all the inter-site distances were set equal 
to 10, all the inter-facility traffic volumes were set equal to 50, 
and all the facility operating costs were set to zero. This 
additional problem is labeled "QAPn6x." 

The computational results are summarized in Table 3.1. 
(Furher details are provided in [13].) We applied the simplex 
procedure implementation of the OSL Optimization Package 
(IBM) to solve the dual form of each of the problems. The 
average computational time (excluding Problem QAPn6x) 
was 16.0814 seconds and 6.7626 seconds of Toshiba 
Satellite A65-1362, 2.53 GHz Celeron D, Notebook Computer 
time for the problems without facility operating costs and the 
problems with facility operating costs, respectively. The 
corresponding averages of the numbers of iterations were 
4,357.8 and 2,705.8, respectively. 

We also solved the primal form of each of the test 
problems. Computational times for the primal form were 
significantly greater than for the dual LP form in general. 
However, the primal LP form appeared to hold some promise 
with respect to future developments because of the relatively 
small number (specifically, 2, on average) of perfect 
matchings of the facilities and sites that are examined. 
Overall, our experimentation with the primal forms provided 
the empirical validation of our theoretical developments in 
section 2 of this paper that we were seeking (see Proposition 
5, in particular). 

IV. CONCLUSIONS 

We have developed a first polynomial-sized linear 
programming model of the QAP. From a theoretical 
perspective, the proposed model provides an affirmative 
resolution to the very long-standing, central, and very far- 
reaching issue in Operations Research and Mathematics in 
general, of the equality of computational complexity classes P 
and NP. With respect to practice, our proposed model and 
modeling approach appear to hold some good promises 
because of the somewhat "friendly," network-based 
mathematical programming sub-structure of the model, the 
special ("perfect matching") structure of the basic feasible 
solutions of the model, and the relatively small number of 
perfect matchings that are examined when the primal LP form 
of the model is used. 
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I :  ("): "QAPn..": a operating costs are zero; ,, 

"QAPo..": a operating costs are positive; 
(b): excludes Problem QAPn6x 

QAPo62 

QAPo63 

QAPo64 

QAPo65 

Average 

2: "p.b.m". = "perfect bipartite matching" 

3: Total CPU time (Toshiba Satellite A65-S1362 Notebook; 
2.53 GHz Celeron D Processor) 

Table 3.1: Summary of the Computational Results 

2 

1 

2 

2 

1.8 

2.379 

3,293 

2,600 

2,327 

2,705.8 

5.328 

9.516 

6.031 

5.297 

6.7626 

51.087 

72.720 

57,218 

53,586 

---- 


