

固体多孔材料中的"孔" ---- ISO15901

- 不同的乳(微乳、介乳和大乳)可视作 固体内的乳、通道或空腔,或者是形成 床层、压制体以及团聚体的固体颗粒间 的空间(如裂缝或空隙)。
- 除了可测定孔外,固体中可能还有一些 闭孔,这些孔与外表面不相通,且流体 不能渗入。本标准不涉及闭孔的表征。

© 2003, Quantachrome Instruments

	汞蒸汽监测 ── ^{冷阱的重要}	报告	
报告者: 危险排放	物管理委员会		
仪器: Jerome 411 会	金膜汞蒸汽分析仪		
呼吸区域:入口,	压汞仪前, 压汞仪后, 汞废物收	集盘(<0.001Hg mg/m ³)	
呼吸区域:入口, 」 实验前	压 汞仪前,压汞仪后,汞废物 收 实验中	集盘(<0.001Hg mg/m ³) 单位: Hg <u>实验</u> 后	g mg/m³
呼吸区域:入口, 〕 <u>实验前</u> 呼吸区<0.001	压汞仪前,压汞仪后,汞废物收 实验中 样品管口< 0.001	集盘(<0.001Hg mg/m ³) 单位: Hg <u>实验后</u> 呼吸区< 0.001	g mg/m³
呼吸区域:入口, <u>实验前</u> 呼吸区<0.001 汞收集盘<0.001	压汞仪前,压汞仪后,汞废物收 <u>实验中</u> 样品管口< 0.001 泵口(启动 1min 后) <0.001	集盘(<0.001Hg mg/m ³) 単位: Hg <u>实验后</u> 呼吸区< 0.001 汞收集盘 < 0.004	g mg/m ³
呼吸区域:入口, <u>实验前</u> 呼吸区<0.001 汞收集盘<0.001 地板 <0.001	压汞仪前,压汞仪后,汞废物收 <u>实验中</u> 样品管口< 0.001 泵口(启动 1min 后) <0.001 呼吸区< 0.001	集盘(<0.001Hg mg/m ³) 单位: Hg <u>实验后</u> 呼吸区< 0.001 汞收集盘 < 0.004 地板 < 0.004	g mg/m³

汞在各种材料上的接触角				
Contact Angle : Hg on a variety of materials				
Material	Mean contact angle (θ°)	Standard deviation		
Dimethylglyoxime	139.6	0.45		
Galactose	140.3	0.43		
Barium chromate	140.6	0.41		
Titanium oxide	140.9	0.55		
Zinc oxide	141.4	0.34		
Dodecyl sodium sulfate	141.5	0.44		
Antimony oxide	141.6	0.88		
Fumaric acid	143.1	0.27		
Starch	147.2	0.68		
Carbon	154.9	1.2		

Washburn 方程
$$Pr = -2\gamma \cos \theta$$
 $\gamma = 480 \text{ N/m}$ and $\theta = 140^{\circ}$ $\int P = \frac{0.736}{r}$ Where P is in MPa and r in µm

	物理吸附和化学吸附的比较							
R		物理吸附	化学吸附					
	作用力	范德华力	化学键					
	∆H _{ads} (kJ mol ⁻¹)	< 40	50-200					
	E _a (kJ mol⁻¹)	Rare	60–100					
N.	可逆性	有	没有					
	范围	多层	单层					
NZ.	© Copyright Quantachtrome Corporation 2000. All rights reserved.							

Langmuirian behavior

Confining adsorption to a monolayer, the Langmuir equation can be written

$$\frac{V}{V_m} = \frac{KP}{1 + KP}$$

where *V* is the volume of gas adsorbed at pressure *P*, V_m is the monolayer capacity (i.e. $\theta = 1$) expressed as the volume of gas at STP and *K* is a constant for any given gas-solid pair. Rearranging in the form of a straight line (y=ab+x) gives

$$\frac{P}{V} = \frac{1}{KV_m} + \frac{P}{V_m}$$

a production	单点与多,	点的比较	
	相对	误差	
The second	C 常 数	相对误差	
A.	1	0.70	
	1 0	0.19	
2 Ch	5 0	0.04	
and the training	1 0 0	0.02	
R	1000	0.002	
State .	ω	0	
R.	© Carteriate Quantashrana (-	

在MONOSORB中对单点BET的校正

> Correction of single point "error" at $P/P^0 = 0.3$ by multiplying the single point BET value by C/C-2 decreases the difference.

Sample No.	Multi-point BET (m²/g)	Uncorrected single-point (m²/g)	Uncorrected difference (%)	Corrected single – point (m²/g)	Corrected difference (%)
1	4.923	4.241	-13.9	4.948	0.51
2	4.286	3.664	-14.5	4.275	-0.26
3	8.056	6.867	-14.8	8.011	-0.56
4	5.957	5.194	-12.8	6.060	+1.73

ļ	气化	坏吸	附	法	测	定较大孔(20-50nm)
相对压	力和	筒形:	孔半	径的	为对应	关系
1	2	3	4	5	6	
p/p.	- n	D: AVF	t.	∆t		0 0
P P C	nm	nm	nm	nm	nm	1 v except
0.9947	179.334		3.469		182.803	146-601
0.9898	92.954	136.144	2,786	0.682	95.741	6.85-651 - 1 XI-000 - 1 XI-000
0.9885	82 392	87 673	2 677	0.110	85.069	145-001 - 110-000 - 110-000
0.9865	70 115	76 254	2 536	0.140	72 652	148.201
0.0000	50.213	60 164	2.000	0.267	52 483	52E-801
0.0012	44.600	47 464	2.205	0.207	46.974	₹ 485.000
0.9789	44.688	47.451	2.183	0.086	46.871	446.00
0.9766	40.248	42.468	2.108	0.075	42.356	1 346-821
0.9733	35.214	37.731	2.016	0.092	37.230	2 3 28-001
0.9690	30.263	32.739	1.917	0.099	32.180	2.06-800
0.9633	25.488	27.875	1.810	0.107	27.298	2 340 807
0.9586	22.539	24.014	1.738	0.073	24.277	145.001
0.9531	19.840	21.189	1.665	0.072	21.505	136-801
0 <mark>.948</mark> 7	18.096	18.968	1.615	0.050	19.711	144-02
0.9383	14.964	16.530	1.516	0.099	16.480	18:00 0000000 0 0 0 000000 0 0 18:00
0.9295	13.035	14.000	1.448	0.068	14.483	1.000 2.000 3.0004.000 10.000 20.000 50.000 100.000 300.000
0.9183	11.181	12.108	1.375	0.072	12.557	For Canada: (sr)
0.9095	10.046	10.614	1.327	0.048	11.374	condition on Frances and Wanter Const. In Constant day, and a
0 9003	9 074	9 560	1 283	0 044	10.357	NOVA1000氯吸附下薄膜样品的大孔
0.8933	8 446	8 760	1 253	0.030	9 699	公布图案(引直经=30nm)
0.8624	6.438	7 442	1 144	0.108	7 582	ハ ツ 四 米 (10 里 1エーJ011111)
0.0024	4 750	F E00	1.144	0.100	F 702	and the second se
0.7796	3.828	4.293	0.962	0.072	4.790	achrome Instruments

	气存	本吸	附衫	去狈	则定	微	孔((0.4	-2n	m)
表 A	.3根据Ha	orvath-Ka	wazoe 法	77.3K 即	」 氦在炭	侠缝孔内]发生微	孔填充时	孔径与柞	目对压力的关
d _p [ոm]	0.4	0.5	0.6	0.7	0.8	1.0	1.2	1.4	1.7	2.0
p/p_0	1.8× 10 ⁻⁷	1.2× 10 ⁻⁵	1.7× 10 ⁻⁴	9.6× 10 ⁻⁴	3.2× 10 ⁻³	1.4× 10 ⁻²	3.5× 10 ⁻²	6.3× 10 ⁻²	1.1× 10 ⁻¹	1.6× 10 ⁻¹
表 A	.4根据Sa	ito-Foley	法 87. 27h	(时氩在泳	常石分子) 系	帝圆柱形	孔内发生	微孔填充	を时孔径ら	5相对压力的
d _p [nm]	0.4	0.5	0.6	0.7	0.8	1.0	1.2	1.4	1.7	2.0
<i>p/p</i> 0	5.7× 10 ⁻⁷	9.8× 10 ⁻⁶	1.4× 10 ⁴	8.7× 10 ⁴	3.1× 10 ⁻³	1.5× 10 ⁻²	3.9× 10 ⁻²	7.2× 10 ⁻²	1.3× 10 ⁻¹	1.9× 10 ⁻¹
			© ´	2002 000	ntochrom	Inctrum	onto			

