Ultraviolet-Visible Spectroscopy

- Introduction to UV-Visible
 - Absorption spectroscopy from 160 nm to 780 nm
 - Measurement of transmittance
 - → Conversion to absorbance

*
$$A = -logT = \epsilon bc$$

- Measurement of transmittance and absorbance
- Beer's law
- Noise
- Instrumentation

Measurement

- Scattering of light
 - Refraction at interfaces
 - Scatter in solution
 - **→**Large molecules
 - →Air bubbles
- Normalized by comparison to reference cell
 - Contains only solvent
 - → Measurement for transmittance is compared to results from reference cell

Beer's Law

- Based on absorption of light by a sample
 - $dP_{v}/P_{v}=dS/S$
 - →dS/S=ratio of absorbance area to total area
 - *Proportional to number of $-\int_{P_{x}}^{P} \frac{dP_{x}}{P_{x}} = \int_{0}^{n} \frac{adn}{S}$ absorbing particles
 - \rightarrow dS=adn
 - * a is a constant, dn is number of particles
 - n is total number of particles within a sample

$$-\int_{P_o}^{P} \frac{dP_x}{P_x} = \int_{0}^{n} \frac{adn}{S}$$
$$-\ln\frac{P_o}{P} = \frac{an}{S}$$

$$\log \frac{P_o}{P} = \frac{an}{2.303S}$$

Beer's Law

- Area S can be described by volume and length
 - \blacksquare S=V/b (cm²)

• Substitute for S
$$\log \frac{P_o}{P} = \frac{anb}{2.303V}$$

- n/V = concentration
- **Substitute concentration and collect** constant into single term ε
- Beer's law can be applied to mixtures
 - \bullet $A_{tot} = \sum A_x$

Beer's Law Limitations

- Equilibrium shift
 - pH indicators
 - → Need to consider speciation
 - → Weak acid equilibrium

Beer's Law Limitation

- Polychromatic Light
 - More than one wavelength

Noise

- Limited readout resolution
- Dark current and electronic noise
- Photon detector shot noise
- Cell position uncertainty
 - Changing samples
- Flicker

Instrumentation

- Light source
 - Deuterium and hydrogen lamps
 - W filament lamp
 - Xe arc lamps
- Sample containers
 - Cuvettes
 - → Plastic
 - \rightarrow Glass
 - \rightarrow Quartz

Spectrometers

Spectrometer

Time separated double beam

Spectrometer

Application of UV-Visible Spectroscopy

- Identification of inorganic and organic species
- Widely used method
- Magnitude of molar absorptivities
- Absorbing species
- methods

Molar Absorptivties

- Range from 0 to 1E5
 - ε=8.7E19PA
 - **→** P=transition probability
 - \rightarrow A=target cross section (cm²)
 - * Allowed transitions 0.1>P>1
 - **ε range 1E4 to 1E5**
 - * Forbidden transition 0.01
- Absorbing species
 - M+γ->M*
 - → M* has a short lifetime (nanoseconds)
 - **→** Relaxation processes
 - * Heat
 - * Photo emission
 - Fluorescence or phosphorescence

Absorbing species

- Electronic transitions
 - π , σ , and n electrons
 - d and f electrons
 - Charge transfer reactions
- \square π , σ , and n (non-bonding) electrons

Sigma and Pi orbitals

Electron transitions

Transitions

- □ σ->σ*
 - UV photon required, high energy
 - \rightarrow Methane at 125 nm
 - \rightarrow Ethane at 135 nm
- $n \rightarrow \sigma^*$
 - Saturated compounds with unshared e⁻
 - → Absorption between 150 nm to 250 nm
 - \rightarrow ϵ between 100 and 3000 L cm⁻¹ mol⁻¹
 - → Shifts to shorter wavelengths with polar solvents
 - * Minimum accessibility
 - Halogens, N, O, S

Transitions

- $n->\pi*, \pi->\pi*$
 - Organic compounds, wavelengths 200 to 700 nm
 - Requires unsaturated groups

```
\rightarrown->\pi* low \epsilon (10 to 100)
```

* Shorter wavelengths

 $\rightarrow \pi -> \pi *$ higher ϵ (1000 to 10000)

Solvent effects

Transitions

- d-d
 - 3d and 4d 1st and 2nd transitions series
 - Broad transitions
 - **→Impacted by solution**

Transitions

D transitions

- Partially occupied d orbitals
 - Transitions from lower to higher energy levels
 - →Splitting of levels due to spatial distribution

D transitions

 Binding ligands on axis have greater effect on axial orbitals

D transitions

- \square Δ value dependent upon ligand field strength
 - Sr-<Cl-<F-<OH-<C2O42-~H2O<SCN-</p>
 <NH3<en<NO2-<CN-</p>
 - lacktriangledown Δ increases with increasing field strength
- f-f
 - 4f and 5f (lanthanides and actinides)
 - Sharper transitions

Actinide transitions

Figure 2: UV-vis spectra of organic phases for 13M HNO_3 system

Charge-transfer Transitions

- Electron donor and acceptor characteristics
 - Absorption involves e transitions from donor to acceptor
 - \rightarrow SCN to Fe(III)
 - * Fe(II) and neutral SCN
 - Metal is acceptor
 - → Reduced metals can be exception

Electronic Spectra

- $Cr(NH_3)_6^{3+}$
 - \mathbf{d}^3
 - Weak low energy transition
 - **→** Spin forbidden
 - 2 stronger transitions
 - **→** Spin allowed
 - * t_{2g} and e_g transitions
 - Lower energy to higher energy
 - CT at higher energy
 - → Ligand to metal transition

Charge transfer bands

- High energy absorbance
 - Energy greater than d-d transition
 - → Electron moves between orbitals
 - * Metal to ligand
 - * Ligand to metal
 - **→** Sensitive to solvent
- LMCT
 - High oxidation state metal ion
 - Lone pair ligand donor
- MLCT
 - Low lying pi, aromatic
 - Low oxidation state metal
 - → High d orbital energy

Solvent effect

Methods

- Titration
 - Change of absorbance with solution variation
 - →pH, ligand, metal
- Photoacoustic effect
 - Emission of sound