Kara0807的个人博客分享 http://blog.sciencenet.cn/u/Kara0807

博文

面向可解释性人工智能与大数据的模糊系统发展展望

已有 1787 次阅读 2020-3-12 09:59 |个人分类:智能科学与技术学报|系统分类:论文交流

 面向可解释性人工智能与大数据的模糊系统发展展望

陈德旺, 蔡际杰, 黄允浒                      

摘要模糊系统作为一种万能逼近器具有很强的可解释性,已被广泛应用在各个领域。尽管目前模糊系统的理论研究不够成熟,仍然存在诸如规则太多、优化困难、维度诅咒等问题,难以处理高维大数据。尽管深度神经网络取得了突出进展,能很好处理图像和语音等大数据,但其可解释性不好,难以用于安全相关的重要场合。因此,非常有必要研究一种基于模糊系统的可解释性强的人工智能算法。结合深度神经网络和模糊系统两者的优点,研究深度模糊系统及其算法,将有可能解决高维大数据问题。主要对模糊系统的发展历程与研究进展分别进行详细阐述,并根据其现有的问题指出其未来的发展方向,对进一步的研究问题进行展望。        

关键词:  模糊系统 ; 可解释AI ; 高维大数据 ; 深度模糊系统 ; 神经模糊系统

Development prospect of fuzzy system oriented to interpretable artificial intelligence and big data

CHEN Dewang, CAI Jijie, HUANG Yunhu

Abstract As a universal approximator with strong interpretability,fuzzy system has been widely used in various fields.Although the current theoretical research on fuzzy system is not mature enough,there are still many problems such as too many rules,optimization difficulties,dimension curse,which make it difficult to deal with high-dimensional large data.Although deep neural network has made remarkable progress and can process large data such as image and voice very well,its interpretability is not good and it is difficult to be used in important security-related occasions.Therefore,it is necessary to study an interpretable artificial intelligence algorithm based on fuzzy system.Combining the advantages of deep neural network and fuzzy system,it is possible to solve the problem of high dimensional and large data by studying the deep fuzzy system and its algorithm.The development history and research progress of fuzzy system separately was mainly reviews,and its future development direction according to its existing problems was pointed out,and the summary of this article and the prospect for further research about the problems were given.       

Keywords: fuzzy system ; interpretable artificial intelligence ; high-dimensional big data ; deep fuzzy system ; neuro fuzzy system

Citation CHEN Dewang.Development prospect of fuzzy system oriented to interpretable artificial intelligence and big data. Chinese Journal of Intelligent Science and Technology[J], 2019, 1(4):  327-334


1 引言

模糊集合论[1]由 Zadeh 教授于 1965 年首次提出,该集合称为 I-型模糊集合(type-1 fuzzy set, T1-FS)。由于经典控制论过于强调精确性,无法解决复杂系统问题,因此Zadeh教授决定采用数学的形式描述模糊概念。模糊集合论的提出使计算机突破了无法处理模糊概念的禁锢。Zadeh 教授[2]于1975年提出II-型模糊集合(type-2 fuzzy set,T2-FS)的概念,增强了集合的模糊性,进而提高了处理不确定性问题的能力。II-型模糊集合及系统作为I-型模糊集合与系统的扩展,其最主要的特征是能够对不确定性问题进行建模并最小化其影响。若所有不确定性都消失了,则II-型模糊集合和系统将与I-型模糊集合和系统相对应。此外,Zadeh 教授陆续提出了模糊算法[3]、模糊决策[4]、模糊排序[5]等概念,Zadeh教授在模糊领域所做的贡献为人工智能artificial intelligence,AI)开辟了一条新道路,使模糊系统(fuzzy system,FS)的研究得以快速发展。有学者将 FS 应用在了控制领域,促进了用于处理实际系统的模糊控制器的产生[6]

FS能够模仿人类的知识推理能力,将复杂的模糊问题清晰化,将具体问题抽象成函数问题,并基于组合规则库中的 IF-THEN 规则生成输入与输出的映射关系[7]。FS具有如下优点:一是可以逼近任意非线性函数;二是可以充分利用各种有效信息,有机结合数据信息和描述信息,从而建立误差尽可能小的非线性函数;三是其规则可以很好地解释FS的结构及参数,可解释性强[8]。FS的可解释性(包括最简约模糊划分、完备-清晰性、模糊规则的完备性、紧凑性和一致性[9])可以解释算法的模型结构和参数,可以体现输出结果的产生过程,为人们理解 FS 的原理提供了便利。而神经网络(neural network,NN)在可解释性上却很差,即使是专家也难以解释和理解其参数的意义,这也是NN难以被应用到安全等领域的原因之一。目前,虽然基于神经网络的方法、基于全局优化(global optimization,GO)的FS以及NN、FS和遗传算法(genetic algorithm,GA)三者结合的方法较好地解决了图像识别、自然语言处理等可解释性差的问题,但却无法保证其可解释性。原因是这些算法的目标是获得最优的系统响应性能,而对于模糊集合划分个数、隶属度函数参数的选取却缺乏有效的指导。因此,如何得到最优的响应系统,同时又保证较高的可解释性,成为一个亟待解决的问题。

20世纪70年代初,许多学者利用FS可解释性强、易于控制的优点,将模糊理论运用于自动化控制领域,由此产生了模糊控制器这一概念,Mamdani在 1974 年研制出了第一个模糊控制器,并将其应用在了锅炉和蒸汽机的控制上,取得了很好的效果,这也标志着模糊控制论的诞生[10]。在此之后,又陆续出现了多种模糊控制应用,如日本学者Sugeno为了更好地控制电子水净化厂,于1980年研制出日本首个模糊控制应用,其后又研制出了模糊机器人;Yasunobu 和 Miyamoto 等人于 20 世纪80年代初为仙台地铁开发出了一套FS应用;日本松下电器有限公司于 1990 年生产了第一台模糊洗衣机;日本三菱汽车公司于 1992 年研制出汽车模糊控制多用途系统等[11]。事实证明,FS 在控制领域的潜力巨大,其不仅易于构造,而且操作效果好。

II-型模糊集合作为I-型模糊集合的扩展,其对应的模糊控制器在高不确定性场合性能明显优于I-型控制器。近些年,经过众多学者的共同努力, FS领域的研究得到了快速发展,并取得了骄人的成就。如Wang研究了I-类型单重模糊集和系统,并取得了3项主要突破:一是证明I-型模糊系统是万能逼近器[12];二是提出从数据中提取规则的WM (Wang-Mendel)方法[13];三是设计出能够确保稳定性的模糊控制器[14]。除此之外,Wang还在模糊基函数展开、隶属函数参数以及模糊系统可解释行等方面取得了一系列突破。Mouzouris[15]将Wang的工作扩展到非单重模糊化,同时利用奇异值分解(singular value decomposition,SVD)算法降低了模糊规则数。Karnik[16]给出了单变量II-型模糊系统的基本框架,包括 2 个计算类型约简集的算法(KM算法)以及计算一般II-型模糊集的算法等。Liang[17]将一类模糊集的不确定性问题建模为一类区间模糊数,建模结果是区间II-型Mamdani和TSK模糊系统。Wu[18]提出了区间集降型的不确定性界,证明了一个关于质心切换点的重要结果。Liu[19]提出了一般II-型模糊集的α平面表示,并展示了如何计算一般 II-型模糊集的质心。Wu[20]改进了知识管理算法,并提供了许多关于模糊系统非常重要的见解和理论结果,包括I-型模糊系统和区间II-型模糊系统的连续性及基本区别。

尽管 FS 在一些领域上已经取得了进步,但近些年来,对 FS 的研究并非主流,其中一个主要的原因是人们对 FS 的认识仍停留在初级阶段,一些基于 FS 的理论还不够完善。另外,由于当前大数据框架下的 FS 理论问题研究和应用呈现出日益增长的趋势[21],对 FS 提出了应对高维大数据问题的挑战。Ferranti 等人[22]曾提出一个分布式的PAES-RCS 版本进化方法,使 FS 从大量数据中提取模糊规则后仍能够解释推断出结论的原因;Marquez等人[23]以大数据环境下的模糊回归为例,提出了一种分布式MapReduce模型,提高了模糊模型的精度。但 FS 依然存在维数灾难的问题。若能够解决高维大数据的问题,FS便能够轻松地解决复杂系统的问题。而在 FS 能够快速解决复杂系统的问题后,还需要验证和说明FS的合法性和有效性[24],针对 FS 中的学习算法优化其收敛性和性能指标,并进行FS的可靠性分析[25]

本文的结构如下:第2节描述了FS第一次兴起与衰落的过程;第3节阐述了FS第二次兴起与衰落的过程,分析了其第二次衰落的原因,并介绍了FS再次兴起时取得的进步;第4节结合当下的人工智能新时代,分析FS的过去和现状,提出FS未来的发展方向;第5节对FS的发展历程进行总结,并根据 FS 发展过程中存在的问题以及待发掘的潜力展望FS的未来。

2 FS的第一次兴起与衰落

模糊理论的初衷是解决复杂系统问题,因此Zadeh 通过引进模糊数学的方式将复杂系统中的模糊问题清晰化,找到了一种可以处理不确定性问题的方法。1965 年后,Zadeh 教授陆续提出了模糊算法、模糊决策、模糊排序等概念。模糊算法主要是先对数据进行模糊化,再产生模糊规则,最后根据模糊规则对要输出的信息进行解模糊化,经过一系列的实践和应用证明,模糊算法优于传统方法,具有较高的可行性。模糊决策是模糊集合论与决策理论结合产生的一个新概念,它可以模拟人类思维进行有效的决策[26]。模糊排序是对排序概念的推广,是一种传递的模糊关系,如关系xy x≫y(x比y大得多)是实数集中的模糊线性排序。1974年,Mamdani教授将模糊数学理论应用于对复杂系统的控制,并研制出首个模糊控制器[27],这标志着模糊控制理论的诞生,同时也开创了模糊控制领域的先河。

但是在1974年后,FS的发展速度变慢,并逐渐淡出人们的视野。总结其原因,主要有以下几点:第一,由于FS刚起步,很多理论知识还不够成熟,许多分析 FS 的方法还停留在初级阶段,因此许多复杂的问题还无法得到解决;第二,部分学者在研究FS 的过程中遇到了难以解决的维数灾难问题和精度问题,所以决定脱离FS的研究大军,转向其他领域。还不够成熟的理论知识框架以及越来越多的研究者放弃模糊领域,导致FS迎来了它的第一次寒冬。

寒冬期过后,模糊领域的学者研究 FS 的热情再次高涨。因此,FS的理论和应用在1980年至1988 年也取得了很好的成绩,尤其是在模糊控制领域。模糊理论解决了很多应用问题,产生了很多模糊控制系统。FS给自动化控制领域带来的巨变令大家叹为观止,也正是因为模糊理论给控制领域带来的巨大贡献,学术界中涌现出了大量学者研究FS,由此将FS推向了第一次高峰。

3 FS的第二次兴起与衰落

FS发展迅速,短短几年内取得了很大的进步。但也正是因为FS在理论和应用取得了一定的成就,导致之后的研究很难再有突破,许多学者因为找不到 FS 的后续研究方向,转向了其他领域。因此, FS大概在1990年后发展逐渐变慢,开始了它的第二次寒冬。

FS在经历了第二次寒冬后,于1992年左右又开始慢慢兴起,这得益于许多学者对模糊领域坚持不懈的努力探索。早期出现的纯 FS 由于只包含了模糊规则库和模糊推理机,其输入和输出均为模糊集合,而实际问题的输入和输出一般为精确值,所以纯 FS 往往不能解决实际问题[28]。针对该问题, Takagi、Sugeno和Kang等人提出了TSK模糊系统(TSKFS),其核心思想是在纯 FS 的基础上根据参数估计的方法确定系统参数,使模糊规则的输出为精确值。该系统具有较好的非线性逼近能力和可解释性,可以快速处理复杂的不确定性问题,处理回归、分类和决策等问题效果极佳,因此被广泛地运用在智能控制、模式识别、图像处理等领域[29]

除TSKFS外,还出现了Mamdani 型FS,该系统给FS添加了模糊产生器和模糊消除器,模糊产生器的功能是将实际问题的精确输入值转换为模糊集合,完成模糊化操作,模糊消除器的功能是将FS输出的模糊集合解模糊化,形成精确值。同样地, Mamdani 型FS的应用领域也很广泛。以上2个FS在各领域均取得了一定成果,但仍存在缺陷。前者因为输入的不确定性限制了其应用范围,后者因为推理过程比较复杂,不利于FS的设计和稳定性分析。因此结合二者的优缺点提出了一种更优型的FS[30]

1992年Wang等人利用Stone-Weierstrass定理,证明了一类 FS 是万能逼近器,逼近精度可以达到任意值。并在模糊隶属度函数表示的基础上,提出通过一种基于输入输出对的正交最小二乘学习算法设计FS[10]。同年,Wang等人使FS具有了从数据中学习模糊规则的能力[11],并创立了WM方法[31]。1993 年 Jang 发明了基于自适应神经网络的模糊推理系统(adaptive network-based fuzzy inference system,ANFIS),提出了 ANFIS 的体系结构和学习过程[32],Wang和Jang共同开创了当时比较热点的神经模糊系统(neural fuzzy system,NFS)。FS的发展越来越快,许多学者朝着 FS 的方向不断前进。IEEE于1993年对FS表示认可,并创办了IEEE FS会刊,标志着模糊理论被大多数人接受。1994年, Kosko[33]证明了 FS 可以对任意一个真实连续函数进行任意程度的精确逼近。1999年,为了更好地描述和处理不确定性问题,Mendel等人[34]提出了Ⅱ-型模糊逻辑系统,该系统是在传统FS上进行扩展得到的,增强了 FS 解决复杂系统问题的能力。FS逐渐拥有了自适应学习的能力,并在各领域取得了很大的进步,FS第二次攀上了发展的高峰。

4 期待第三次兴起

在21世纪初,FS由于维数灾难问题,无法解决一些特别复杂的问题,因此发展逐渐变慢,并迎来了它的第三次寒冬。在寒冬期间,其发展状况时刻警醒着那些仍然坚守在 FS 研究战线的学者们要针对FS的不足进行改进,使FS再次兴起。学者们发现 FS 存在的一些问题其实可以借鉴人工智能领域的知识解决。因此需要深入分析FS的结构特性,为 FS 建立一套完整的理论体系,在与人工智能技术结合时,可以做到心中有数。

近年来,通过结合新技术,FS 进步飞快。如2000年后,各类FS被陆续证明是万能函数逼近器,可以任意逼近非线性函数到任意精度[35];陈龙[36]等人于 2003年提出了一种新的神经模糊系统和学习算法,该系统由模糊推理系统及其对应的NN系统构成,具有较强的学习能力和可解释性;武妍等人[37]进行了FS与NN、GA结合的研究,他们认为结合后的技术具有十分广阔的发展前景,可以从根本上实现人工智能。FS与NN结合的产物主要包括模糊神经网络(fuzzy neural network,FNN)和 NFS。NFS 以 NN 为主,是利用NN的学习算法实现的模糊系统,其实现方法一般是先提取模糊规则,再利用NN中的学习算法调整模糊系统参数[38];FNN以FS为主,以FS中的模糊逻辑实现NN参数和权值的模糊化,从而提高 NN 处理大数据的能力[39]。FS 与 NN的结合已被广泛应用在计算机视觉、语音处理、医疗诊断等领域。

另外,近年来还有许多学者将GA与FS结合,解决了很多实际问题。Shokrollahi等人[40]利用模糊C 均值和遗传模糊系统算法(GFSA)设计出了一种高效节能的聚类算法(CA);Mahmoudi 等人[41]提出了一种GA+FS(GFS)的混合求解方法,该方法可以构建出利润最大化的双渠道供应链模型。FS结合新时代下的新技术提出的创新数不胜数,给研究者们将FS与其他技术结合带来了优势,为FS再一次兴起创造条件。

另外,FS可以针对NN的不足,利用自身优势完成突破。本文对比了NN和FS的发展历程(见表1),尽管NN在识别、分类、回归等问题上的精度比FS好,但它需要大量的训练,而且随着层数的增加,人们难以解释 NN 的结构和参数。在最近一期的 Nature 子刊中,Zador[42]批判了人工NN 的不足,他认为先天结构比后天训练更加重要。而FS的先天结构具有很强的可解释性,无需大量的训练,可以很好地弥补NN的缺点。

FS能够模拟人类的知识推理能力,而深度学习能够模拟人类的学习能力,将二者结合将有助于充分模拟人脑的思维特点,是目前实现智能控制的重要形式。根据扬长避短、相互借鉴的原则,深度学习和FS的结合必然产生思维碰撞的火花。因此研究者们要结合深度学习和FS,深入研究深度模糊系统(deep fuzzy system,DFS),使FS既拥有自学习能力和知识推理能力,又可以解决高维大数据问题。

目前,大数据及其应用已成为一个热门话题,利用大数据技术可以从海量信息中提取知识。在众多处理大数据的方法中,基于 FS 的模型有着突出的应用。FS允许在大数据计算问题中包含多样性和准确性,因此 FS 在大数据问题方面的应用广泛。Jin 等人[43]将传统的模糊推理技术与模糊插值方法相结合,对大数据应用中的动态模糊推理进行了初步研究,并证明了该方法在大数据分类问题方面的潜力和有效性。Wu 等人[44]通过分析大数据及其相关隐私的保护方法,对隐私保护进行了综述,并在此基础上,给出了基于模糊集的隐私保护算法的实现公式,其将 FS 与大数据结合应用在隐私保护方面,有效减轻了大数据时代下人们对个人隐私泄露的担忧。Wang等人[45]构造了II-型模糊系统的并行计算方法,并克服了大数据中计算机的索引限制。


表1    NN与FS发展对比

NN

FS

第一次兴起代表人物

第一次兴起代表人物

McCulloch、Pitts:1943年提出抽象的神经元模型MP

Zadeh(开创人物):模糊理论之父,为模糊领域作出许多贡献;1965年提出模糊子集概念

Hebb:1949年提出突触学习的Hebb定律

Rosenblat:1958年提出可以模拟人类感知能力的感知器

Mandami:1974年开创模糊控制

Sugeno:1980年提出地铁模糊控制

第二次兴起代表人物

第二次兴起代表人物

Hopfield:1982年提出新型神经网络Hopield,该网络结合存储系统和二元系统,提供了模拟人类记忆的模型

Lee:1990年提出了控制模糊逻辑控制器的理论与设计方法

Rumelhart:1986 年和Hinton共同提出反向传播算法

Wang:1992年与Mendel提出WM方法,实现从数据中产生模糊规则;1993 年提出能确保稳定的自适应模糊控制器的方法;1998年发表多层模糊系统的万能逼近定理;1999 年发表多层模糊系统的BP算法

Vapnik:1995年提出支持向量机(SVM)

Jang:1993年提出ANFIS,使FS拥有了自学习能力

第三次兴起代表人物

DFS(第三次兴起可能会出现的主要技术)

Geofrey Hinton:2005年在Science发表论文提出用神经网络进行维数约简;2012年和他的学生提出AlexNet;其后提出自编码器等算法,使得神经网络可以有效处理高维大数据,获得ImageNet冠军

DCFS:深度卷积模糊系统

DCANFIS:深度卷积自适应神经模糊推理系统

LeCun:2016年提出基于能量的生成对抗网络模型

RFS:循环模糊系统

•oshua Bengio:2009年提出学习人工智能的深层架构

以上3人2015年在Nature上共同发表深度学习综述,2018共同获得图灵奖,使得深度神经网络一鸣惊人

   

FS 在大数据应用方面的实际问题还有很多,近年来,模糊领域相关学者利用模糊系统表示和量化不确定性问题的能力,解决了大数据时代的交通客流预测[46]、股票预测[47]、医疗诊断[48]等一系列实际问题,且取得了显著成效。Wang[49]表示模糊集能使人们在不同的信息粒度级别上表示和处理信息,结合FS的优势可以改善当前的大数据技术,减轻现有的大数据挑战。到目前为止,FS 在处理大数据应用问题上已经取得了重大的突破,各种类型的模糊集技术在大数据处理中的应用层出不穷,由此可见,未来几年 FS在处理大数据应用问题上的潜力是无限的。

因此,倘若突破了FS在处理高维大数据问题方面的瓶颈,保留FS可解释性强的突出优势,深入研究DFS,在未来的几年,FS很有可能会以DFS的形式在人工智能研究领域迎来它的第三次兴起。从1957年感知机到1986年Rumelhart提出BP算法,NN 的发展也经历了类似的三起三落,直到2005 年 Hinton 在 Science 上发表论文,提出了以NN进行维数约简可以很好地处理高维大数据,NN才迎来第三次春天。2015 年,LeCun 等在 Nature上正式发表深度学习(deep learning,DL)标志着NN发展的第三次高潮。NN的发展变化如图1所示。


5 结论与展望  

5.1 结论

本文总结了几个关键时间点,给出了 FS 发展至今的变化曲线,如图2所示。FS发展过程跌宕起伏,1965 年至今,经历了三落二起。其中,FS 的发展离不开模糊领域所有学者的不懈努力,从Zadeh教授的模糊集合、Mamdani的模糊控制理论,再到后来的 ANFIS,FS 走过来的每一步都是艰辛的,但其结果也是令人喜悦的。FS理论自诞生起至今大约有50年的历史,在这50年中,人们见证了FS 的发展,FS 的质疑者慢慢变少,支持者越来越多,FS 不仅在控制化领域取得了很大的突破,与NN 结合形成的 NFS 也解决了很多实际问题。FS的能力越来越强大,现在它可以模仿人类的学习能力和知识推理能力,还可以学习 NN 中误差反向传播算法对误差进行反向传播[50]

与此同时,人们根据前人的经验和总结,也发现了FS目前存在的问题。FS发展至今,尽管已经基本具备自学习自适应能力,但依然无法解决高维大数据问题。接下来要做的就是解决问题,从解决FS应对高维大数据问题入手,结合深度学习的理论方法,完善DFS。如果能够正确判断FS的发展方向,解决其现有的关键问题,FS 很有可能会在未来的几年内再次兴起,DFS也很有可能成为深度学习的一个重要发展方向,与深度神经网络(deep neural network,DNN)相互补充,相互促进。

图1

          

图1   NN的发展变化

图2

图2   FS发展变化

5.2 展望

目前 FS 的理论研究仍然不够成熟,主要表现在隶属度函数类型和参数的选择主要依靠经验、现有 FS 的适用范围有限、缺乏在通用硬件平台中的实现方法以及模糊控制系统的稳定性有待提高等,且 NFS 还难以应对较多输入变量引起的维数灾难问题。在大数据与人工智能火热的新时代背景下,研究者们期待FS的第三次兴起。NN和模糊理论技术相互结合、取长补短的例子也恰恰证明了这一点,NFS技术[51]可以组成一个更接近人脑的智能信息处理系统,既可以推理也可以学习,但是还是难以处理高维大数据问题。

DFS作为FS和DL的交叉领域,既是FS的重要发展方向,也是DL的重要发展方向。DFS是指将解决高维大数据问题的 DL 方法应用在 FS 中,相信DFS在解决分类、识别、回归等问题上一定会有出其不意的效果。为了方便模糊领域的研究者们更好地研究模糊理论,笔者期待产生一种新的FS,并致力于开发出基于 Matlab 的深度模糊系统工具箱(deep fuzzy system toolbox,DFST),也可以称之为Matlab的模糊逻辑工具箱(fuzzy logic toolbox, FLT)的2.0版本。

与其他热门的大数据技术不同,FS是一种能够为知识抽象和知识表示提供新策略的方法。FS技术已经为很多大数据应用问题提供了解决方法。但是由于大数据的结构特征日益复杂,仍然有许多具体问题没有得到讨论。因此,笔者相信接下来可能的发展趋势是提高FS应对高维大数据问题的能力,结合相关的人工智能算法将FS扩展到大数据应用中,从而使人们能够更加从容地应对大数据的挑战。

同时,考虑到新时代下 AI 的快速发展和实际问题的高维复杂趋势,人们需要一种可解释性的AI。只有AI算法具有一定的可解释性,AI才能真正地在各个领域为人类保驾护航,人们也才能够更加放心地将 AI 算法应用在一些涉及安全的重大问题上。将AI技术与DFS的强可解释性结合,以期在 FS 规则太多、难以优化、维度诅咒、泛化性能等挑战中取得突破。


作者简介

 

陈德旺(1976-),男,博士,福州大学数学与计算机科学学院教授、博士生导师,福建省“闽江学者特聘教授”,美国加州大学伯克利分校访问学者,中国自动化协会混合智能专委会副主任,中国自动化协会粒计算专委会秘书长,IEEE高级会员,IEEETransactiononITS编委,主要研究方向为人工智能、大数据、最优化、智慧地铁和智慧新能源等 E-mail:dwchen@fzu.edu.cn

 

蔡际杰(1997-),男,福州大学数学与计算机科学学院硕士生,主要研究方向为智能计算和大数据 。


 黄允浒(1990-),男,福州大学数学与计算机科学学院博士生,主要研究方向为智能计算、大数据与最优化 。



https://wap.sciencenet.cn/blog-951291-1223083.html

上一篇:[转载]基于5G的智能指挥控制:现状与前景
下一篇:量子区块链:融合量子信息技术的区块链能否抵御量子霸权?

1 张鹰

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2022-5-19 23:42

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部