chaoshu的个人博客分享 http://blog.sciencenet.cn/u/chaoshu

博文

问题:列满秩(超定方程)——Slepian基函数系数求解

已有 5170 次阅读 2022-9-3 09:09 |个人分类:水文大地测量|系统分类:科研笔记

对于Slepian基函求解等效水高过程中,Slepian基函数系数求解如下:

image.png

A矩阵为n×J维度,rank(A)=J,为列满秩矩阵。

何为列满秩矩阵??

m×n的矩阵A中, 秩 R=n<m 。例如:

image.png


R = 2 = n < m 消元后A

image.png

我们发现这样的矩阵没有自由元,即 x1,x2,⋯,xn 都为主元。也就是说这样的矩阵零空间向量中只有一个向量--零空间。解最后只有两种情况:

有解且唯一

无解,不满足可解条件


矩阵A不是方阵,其维数是m×n,则有:

m=n 恰定方程,求解精确解;

m>n 超定方程,寻求最小二乘解;

m<n 不定方程,寻求基本解,其中至多有m个非零元素。


对于方程组Ax=b,A为n×m矩阵,如果A列满秩,且n>m。则方程组没有精确解,此时称方程组为超定方程组。线性超定方程组经常遇到的问题是数据的曲线拟合。对于超定方程,在MATLAB中,利用左除命令(x=A\b)来寻求它的最小二乘解;还可以用广义逆来求,即x=pinv(A),所得的解不一定满足Ax=b,x只是最小二乘意义上的解。左除的方法是建立在奇异值分解基础之上,由此获得的解最可靠;广义逆法是建立在对原超定方程直接进行householder变换的基础上,其算法可靠性稍逊与奇异值求解,但速度较快;


超定方程组求解
https://blog.csdn.net/Dust_Evc/article/details/102870731




https://wap.sciencenet.cn/blog-858128-1353803.html

上一篇:问题:计算两个长度不同的时间序列相关性?
下一篇:水文大地测量涉及的概念梳理(4)——水文循环
收藏 IP: 61.242.135.*| 热度|

1 王安良

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2025-1-15 16:50

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部