||
卫生保健:对监测数据进行几乎实时的模式分析,发现疾病,例如利用谷歌搜索引擎和GPS定位信息预测引起食源性疾病的餐馆。【Machine-learned epidemiology: real-time detection of foodborne illness at scale | npj Digital Medicine (nature.com)】
健康促进:根据个人危险谱和行为模式,提出有针对性的个性化健康建议。例如利用机器学习改善心血管疾病危险模型。【Can machine-learning improve cardiovascular risk prediction using routine clinical data? (nih.gov)】
增进健康服务的效率:
(1)利用机器学习发现钼靶照相筛查或宫颈细胞学筛查检验中的异常。如(1)用深度学习算法检测糖尿病视网膜病变。【Clinically applicable deep learning for diagnosis and referral in retinal disease | Nature Medicine】
(2)机器学习助力自动化证据合成,如人类行为改变项目中使用机器学习来综合和解释行为改变的证据。【The Human Behaviour-Change Project: harnessing the power of artificial intelligence and machine learning for evidence synthesis and interpretation (biomedcentral.com)】
整理自:
Panch T, Pearson-Stuttard J, Greaves F, Atun R. Artificial intelligence: opportunities and risks for public health. Lancet Digit Health. 2019 May;1(1):e13-e14. doi: 10.1016/S2589-7500(19)30002-0. Epub 2019 May 2. Erratum in: Lancet Digit Health. 2019 Jul;1(3):e113. PMID: 33323236.
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-9-21 04:45
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社