||
太周探测(V)
结 语
近代天文观测从六十年代的四大发现到后来的冲出地球和走向极致,体现了人类无尽的探索欲望。在从射频到紫外乃至X射线等的宽广频谱范围内人们已采用了多种技术来实现苛刻的天文观测要求,包括从无线和红外两个方面向太赫兹间隙逼近直至将其完全填充。新的技术不断取代旧的技术,例如早期用于微波接收的脉泽和参量放大等已被InP基HEMT等器件取代;然而,旧的甚至“古老”的技术也还在继续使用并不断更新迭代,在性能和规模上走向极致,典型如红外波段的InSb和MCT器件,以及从红外延伸到THz波段的IBC和Bolometer器件等;此外,也时有新型器件加入,如超导混频器以及可具有宽响应波长范围和极高灵敏度的超导相变光电探测器等。IBC、Bolometer和超导相变器件本身都可具有高性能或者说高量子效率,但都需要极低的工作温度,有些需要2 K以下甚至更低,而天文观测本身也不得不使仪器乃至航天器本体也保持在足够低的对应温度,因此采用这样的器件是匹配的;然而,电子学器件及其系统为避免载流子冻结则不能有过低的工作温度,系统中电子和光电二类器件需要综合考虑兼顾。目前,地面上单个射电望远镜的主反射天线口径已达500米(FAST),空间红外望远镜的主反射镜口径已达6.5米(JWST),功能也越来越趋于专门化。天文观测一甲子的发展丰富多彩可圈可点,也需要各抱地势勾心斗角,回顾过往了解一些“常识”并进行纵向和横向的比较,将有利于开展新的探索。
Teracycle detection: Starting from the four major
astronomical discoveries in 1960s
References
[1] Penzias A A, Wilson R W. A measurement of excess antenna temperature at 4080 Mc/s [J]. The Astrophysical Journal. 1965, 142(1):419-420
[2] Dicke R H, Peebles P J E, Roll P G, Wilkinson D T. Cosmic black-body radiation [J]. The Astrophysical Journal. 1965, 142(1):414-419
[3] Tabor W J, Sibilia J T. Masers for the Telstar satellite communications [J]. Bell System Technical Journal. 1963, 42:1863-1886
[4] Penzias A A. Helium-cooled reference noise source in a 4-kMc waveguide [J]. Rev. Sci. Instrum. 1965, 36(1):68-70
[5] Roll P G, Wilkinson D T. Cosmic background radiation at 3.2 cm-support for cosmic black-body radiation [J]. Phys. Rev. Lett. 1966, 16(10):405-407
[6] T. F. Howell T F, Shakeshaft J R. Measurement of the minimum cosmic background radiation at 20.7 cm wavelength [J]. Nature. 1966, 210:1318-1319
[7] Penzias A A, Wilson R W. A measurement of the background temperature at 1415 MHz [J]. Astronomical Journal. 1967, 72:315
[8] Welch W J, Keachie S, Thornton D D, Wrixon G. Measurement of the cosmic microwave background temperature at 1.5-cm wavelength [J]. Physical Review Letters. 1967, 18(24):1068-1070
[9] Field G B, Hitchcock J L. Cosmic black-body radiation at l=2.6 mm [J]. Phys. Rev. Lett. 1966, 16(18):817-818
[10] Thaddeus P, Clauser J F. Cosmic microwave radiation at l=2.63 mm from observation of interstellar CN [J]. Phys. Rev. Lett. 1966, 16(18):819-822
[11] Wilson R W. The cosmic microwave background radiation [J]. Science. 1979, 205:866-874
[12] Hewish A, Bell S J, Pilkington J D H, Scott P F, Collins R A. Observation of a rapid pulsating radio source [J]. Nature. 1968, 217:709-713
[13] Greenstein J L, Matthews T A. Red-shift of the unusual radio source: 3C 48. Nature. 1963, 197:1041-1042
[14] Schmidt M. 3C 273: A star-like object with large red-shift. Nature. 1963, 197:1040
[15] Hazard C, Mackey M B, Shimmins A J. Investigation of the radio source 3C 273 by the method of lunar occultations [J]. Nature. 1963, 197:1037-1039
[16] Oke J B. Absolute energy distribution in the optical spectrum of 3C 273. Nature. 1963, 197:1040-1041
[17] Matthews T A, Sandage A R. Optical identification of 3C 48, 3C 196 and 3C 286 with stellar objects [J]. The Astrophysical Journal. 1963, 138:30-56
[18] Greenstein J L, Schmidt M. The quasi-stellar radio source 3C 48 and 3C 273 [J]. The Astrophysical Journal. 1964, 140(1)1-35
[19] Kafka P. How to count Quasars [J]. Nature. 1967, 213:346-350
[20] Swings P, Rosenfeld L. Considerations regarding interstellar molecules [J]. The Astrophysical Journal. 1937, 86:483S-486S
[21] McKellar A. Evidence for the molecular origin of some hitherto unidentified interstellar lines [J]. PASP. Publication of the astronomical society of the pacific. 1940, 52:187-192
[22] Douglas A E, Herzberg G. CH+ in interstellar space and in the laboratory [J]. The Astrophysical Journal. 1941, 94:381D
[23] Cheung A C, Rank D M, Townes C H. Detection of the NH3 molecules in the interstellar medium by their microwave emission [J]. Physical Review Letters. 1968, 21(25):1701-1705
[24] Cheung A C, Rank D M, Townes C H. Welch W J. Further microwave emission lines and clouds of ammonia in our Galaxy [J]. Nature. 1969, 221:917-919
[25] Cheung A C, Rank D M, Townes C H. Detection of water in interstellar region by its microwave radiation [J]. Nature. 1969, 221:626-628
[26] Snyder L E, David Buhl D, Zuckerman B, Palmer P. Microwave detection of interstellar formaldehyde [J]. Physical Review Letters. 1969, 22(13):679-681
[27] Gordon I E, Rothman L S, Hargreaves R J, et, al. The HITRAN2020 molecular spectroscopic database [J]. Journal of Quantitative Spectroscopy & Radiative Transfer. 2022, 277:107949
[28] 张永刚,顾溢, 马英杰. 半导体光谱测试方法与技术-半导体科学与技术丛书 [M]. 北京:科学出版社2016. ISBN: 978-7-03-047222-9
[29] 龚海梅,李雪,张永刚. 铟镓砷光电探测器及其焦平面阵列-空间技术与应用学术著作丛书 [M]. 科学出版社, 2022. ISBN: 978-7-03-072094-8
[30] Hulse R A, Taylor J H. A high-sensitivity pulsar survey [J]. The Astrophysical Journal. 1974, 191:L59-L61
[31] Hulse R A, Taylor J H. Discovery of a pulsar in a binary system [J]. The Astrophysical Journal. 1975, 195:L51-L53
[32] Damour T. 1974: the discovery of the first binary pulsar [J]. Class. Quantum Grav. 2015, 32:124009
[33] Smoot G F, Bennett C L, Weber R, ET, al. COBE differential microwave radiometers: instrument design and implementation [J]. The Astrophysical Journal. 1990, 360:685-695
[34] Smoot G F, Bennett C L, Kought A, et, al. Structure in the COBE differential microwave radiometers first-year maps [J]. The Astrophysical Journal. 1992, 396:L1-L5
[35] Banday A J, Górski K M, Bennett C L, et al. Noncosmological signal contributions to the COBE DMR 4 year sky maps [J]. The Astrophysical Journal. 1996, 468:L85-L89
[36] Hauser M G, Arendt R G, Kelsall T, et al. The COBE diffuse infrared background experiment search for the cosmic infrared background I. Limits and detection [J]. The Astrophysical Journal. 1998, 508:25-43
[37] Mather J C, Cheng E S, Cottingham D A, et al. Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument [J]. The Astrophysical Journal. 1994, 420:439-444
[38] Wright E L, Mather J C, C. L. Bennett C L, et, al. Preliminary spectral observations of the galaxy with a 7°beam by the cosmic background explorer (COBE) [J]. The Astrophysical Journal. 1991, 381:200-209
[39] Fixsen D J, Cheng E S, Gales J M, et, al. The cosmic microwave background spectrum from the full COBE FIRAS data set [J]. The Astrophysical Journal. 1996, 473:576-587
[40] Mather J C, D. J. Fixsen D J, Shafe R A, et, al. Calibration design for the COBE far infrared absolute spectrophotometer (FIRAS) [J]. The Astrophysical Journal. 1999, 512:511-520
[41] Kessler M F. The infrared space observatory (ISO) mission [J]. Adv. Space Res. 2002, 30(9):1957-1965
[42] Murakami H, Freund M F, Gangak K, et, al. The IRTS (Infrared Telescope in Space) mission [J]. Publ. Astron. Soc. Japan. 1996, 48:L41-L46
[43] Williams R. Hubble telescope 30 years in orbit: personal reflections [J]. Research in Astronomy and Astrophysics. 2020, 20(4):44
[44] https://www.nasa.gov/mission_pages/hubble/main/index.html
[45] https://www.nasa.gov/mission_pages/spitzer/main/index.html
[46] http://65m.shao.cas.cn/
[47] https://www.cas.cn/zt/kjzt/fast/
[48] https://wmap.gsfc.nasa.gov/mission/
[49] https://sci.esa.int/web/planck
[50] https://sci.esa.int/web/herschel
[51] https://www.nasa.gov/mission_pages/webb/main/index.html
[52] https://blog.sciencenet.cn/home.php?mod=space&uid=68158&do=blog&id=1357608
[53] https://sci.esa.int/web/euclid
[54] http://hxmtweb.ihep.ac.cn/
[55] https://www.nasa.gov/mission_pages/chandra/main/index.html
[56] http://nao.cas.cn/csst/
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-22 20:48
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社