xie44025的个人博客分享 http://blog.sciencenet.cn/u/xie44025

博文

分子生物学的建立和发展 精选

已有 16924 次阅读 2013-2-14 10:38 |个人分类:科学史|系统分类:观点评述| 学科交叉, 科学革命, 分子生物学

分子生物学的建立和发展

 

1925年摩尔根“基因论”的发表,确立了基因是遗传的基本单位,它存在于细胞的染色体上,决定着生物体的性状。但关于基因的化学本质是什么,它通过什么方式影响生物体的遗传性状,仍然不清楚。揭示基因的本质及其作用方式就成了当时生物学研究的核心问题。对这个问题的研究,开创了分子生物学这门新学科。分子生物学的建立和发展是生物学中信息学派、结构学派和生化遗传学派研究成果结合的产物,是科学史上一次成功的由学科交叉融合而引起的科学革命。发现DNA双螺旋的故事已为人们广为传颂,并作为生物学史上最具传奇色彩的伟大发现而载入生命科学史册

 

1.信息学派:信息学派主要是由一群对遗传信息世代传递感兴趣的物理学家组成,其代表人物是德尔布吕克(Max Delbrück)。德尔布吕克德国物理学家,1930年在美国洛克菲勒基金资助下,到丹麦哥本哈根理论物理研究所,跟随著名物理学家玻尔(Niels Bohr)作博士后研究。1932年,玻尔在哥本哈根举行的国际光治疗大会上作了“光与生命”的演讲。演讲中玻尔提出了认识生命的新思路,认为对生命现象的研究有可能发现一些新的物理学定律。德尔布吕克深受玻尔思想的影响,决定转入生物学研究。他认为,研究遗传信息的世代传递的机制,基因是最好的切入口。德尔布吕克离开哥本哈根回到柏林后,与遗传学家列索夫斯基(Nikolaï. Vladimirovich. Timofeeff-Ressovsky)、生物物理学家齐默尔(Karl. G. Zimmer)合作,从量子理论的角度研究辐射与基因突变的关系,并于1935年出版了《关于基因突变和基因结构的本质》的小册子。书中,他们用量子理论分析讨论了辐射诱导的基因突变的规律,并给出了“基因的量子力学模型”。此模型认为,基因如同分子一样,具有几个不同的,稳定的能级状态。突变被解释为基因分子从一个能级稳态向另一个能级稳态的转变。文章还根据计算,推断了基因的大小。这就是著名的“三人论文”。“三人论文”是一篇完全用物理学的理论和方法对基因进行研究的文章。这篇文章的意义不在于其结论的正确与否,而在于它使许多年轻物理学家们相信,基因是可以通过物理学方法来进行研究的,从而推动了一大批杰出物理学家投入生物学研究。“三人论文”后来成为薛定锷(Erwin. Schrödinger)“生命是什么”一书讨论的基础。

 

1937年,在洛氏基金的资助下,德尔布吕克来到加州理工大学摩尔根实验室进行遗传学研究。在那儿他发现噬菌体是一种比果蝇更适合进行基因研究的材料,并与埃利斯(Emory. Ellis)合作,研究噬菌体的增殖、复制规律,建立了噬菌体的定量测定方法。1940年底,在费城召开的一个物理学年会上,德尔布吕克与刚来美国不久的意大利生物学家卢里亚(Salvador. Edward. Luria)认识了。卢里亚读过“三人论文”,对德尔布吕克极为景仰。当时他刚获得洛氏基金资助,在哥伦比亚大学准备开展X-射线诱导噬菌体突变的研究。共同的兴趣使他们很快建立了合作关系。当时在美国还有一个进行噬菌体研究的科学家是华盛顿大学的赫尔希(Alfred. Hershey)。1943年,德尔布吕克约他在自己实验室见面,并讨论了合作研究计划。这样,一个以德尔布吕克—卢里亚—赫尔希为核心的“噬菌体小组”就形成了。

 

噬菌体小组的研究成果主要有:德尔布吕克与卢里亚合作进行的细菌突变规律的研究开辟了细菌遗传学的新领域;1945年卢里亚和赫尔希分别独立发现噬菌体的突变特性;1946年德尔布吕克与赫尔希又分别独立发现,同时感染一个细菌的二种噬菌体可以发生基因重组,证明了,从最简单的生命到人类的遗传物质都遵循着相同的机制。噬菌体小组最值得夸耀的成果是50年代初证明了基因的化学本质是DNA1944年艾弗里(Oswald. T. Avery)已经通过肺炎球菌转化试验发现,DNA是遗传物质,但一直未获承认。赫尔希和蔡斯(Martha. Chase)分别用35S(与蛋白结合)和32P(结合在DNA上)标记噬菌体,然后用它感染细菌,结果发现噬菌体只有其核酸部分进入细菌,而其蛋白外壳是不进入细菌的。表现为在感染噬菌体的细菌体内复制产生的后代噬菌体主要含有32P标记,而35S的含量低于1%。这清楚地证明,在噬菌体感染的细菌体内,与复制有关的是噬菌体的DNA,而不是蛋白质。1952年,这个结果发表后立刻被广泛接受,对促进沃森(James Watson)和克里克(Francis Crick)确定DNA双螺旋结构的突破,具有重要的意义。

 

噬菌体小组除了在研究遗传信息的传递机制外,还从1941年起,每年都在纽约长岛的冷泉港举行研讨会,并从1945年起每年暑期都举办“噬菌体研究学习班”。学习班课程主要为那些有志于投身生物学研究的物理学家们开设的。通过冷泉港学习班,扩大了噬菌体研究网络,形成并巩固了以德尔布吕克—卢里亚—赫尔希为核心的噬菌体小组在遗传学研究领域的地位,到50年代初,噬菌体小组已成了一个影响很大的遗传学派。

 

噬菌体小组早期的研究工作引起著名物理学家薛定锷的注意,并引起了他对生命的思考。1943年,他在爱尔兰的都柏林三一学院作了一系列演讲,阐述了他对生命的思考。1944年,他将这些演讲整理汇编成书出版,这就是被认为是分子生物学的“汤姆叔叔的小屋”的划时代著作《生命是什么》。在此书中,薛定锷讨论了以噬菌体小组为主的信息学派的研究成果,尤其对德尔布吕克的“基因的量子力学模型”最为推崇。在讨论这些研究成果的同时,薛定锷认为“在有机体的生命周期里展开的事件,显示了一种美妙的规律和秩序。我们以前碰到过的任何一种无生命物质都无法与之相比。”“我们必须准备去发现在生命活体中占支配地位的,新的物理学定律”。

 

《生命是什么》一书对生物学研究产生的影响是震撼性的。著名分子生物学家斯坦特(Gunther. Stent)指出:“在这本书里,薛定锷向他的同行物理学家们预告了一个生物学研究的新纪元即将开始”,“不少物理学家受到这样一个可以通过遗传学研究来发现‘其它物理学定律’的浪漫思想的启发,就离开了他们原来训练有素的职业岗位,转而去致力于基因本质的研究”。分子生物学的历史表明,1950年代那些发动分子生物学革命的科学家,包括DNA双螺旋结构的发现者沃森和克里克都是受薛定锷此书的影响,而转而进行基因的结构与功能研究的。

 

2.结构学派:20世纪30年代起,在生物学领域还有一群物理学家开始从事生物大分子的结构研究,这就是被称为“结构学派”的物理学家。结构学派是由英国卡文迪许实验室的布拉格父子,亨利·布拉格(William. Henry. Bragg)和劳伦斯·布拉格(William. Lawrence. Bragg)创立的。20世纪初,他们发现用X-射线照射结晶体可以在背景上获得不同的衍射图像。通过对衍射图像的分析,就可以推出晶体的结构。他们用这个方法成功地确定了一些盐类(如氯化钾)等的分子结构。1915年,布拉格父子同时获得诺贝尔物理学奖。1938年,劳伦斯·布拉格出任卡文迪许教授,开始将X-射线衍射技术推广应用到对生物大分子(蛋白质、核酸)的三维结构研究。50年代初,当时在卡文迪许实验室的佩鲁兹(Max Peruts)领导下,正在进行二种蛋白质的结构分析。一是他自己领导的研究小组,进行血红蛋白的结构研究;另一个是肯德鲁(John Kendrew)领导的研究小组,进行肌红蛋白的结构分析。此外,在伦敦的国王学院(King’s College)的威尔金斯(Maurice Wilkins)和富兰克林(Rosalind Franklin)的研究小组正在进行用X-射线衍射的方法研究核酸的结构,并取得了很多有意义的成果。结构学派的生物学家们主要对生物大分子的结构感兴趣,对功能研究则较少涉及。

 

3.生化遗传学派:自从1900年孟德尔定律被重新发现之后,“基因是怎样控制特定的性状”的问题就成了遗传学研究的主要问题之一。1902年,英国医生伽罗德(Archibald Garrod)发现一些病孩患尿黑酸症,病人的尿一接触空气就变成黑色。很快这种尿变黑的化学物质就被鉴定出来,即是由酪氨酸转变而成的一种物质。伽罗德对患黑尿病患者的家谱分析发现,此病按孟德尔规则的方式遗传。在进行一系列研究后,1909年伽罗德出版了《新陈代谢的先天缺陷》一书,指出黑尿病患者代谢紊乱是因为酪氨酸分解代谢的第一阶段,即苯环断裂这一步无法进行。因而伽罗德认为,苯环断裂是在某种酶的作用下发生的,病人缺乏这种酶,所以出现黑尿症状。这样就把一种遗传性状(黑尿)与酶(蛋白质)联系起来了。但对遗传因子与酶的这种预测性的设想,却无法得到实验证实。

 

1940年,比德尔和塔特姆(E.L.Tatum)开始用红色链孢菌研究基因与酶的关系。他们用X-射线照射诱导产生链孢菌的突变体,发现了几种不同的失去合成能力的链孢菌。他们通过对这些突变体杂交后代的遗传学分析表明,每一种突变体都是单个基因突变的产物,并认为每一个基因的功能相当于一个酶的作用。由此,于1941年他们提出了“一个基因一个酶”的假说。按照这个假说,基因决定酶的形成,而酶又控制生化反应,从而控制代谢过程。1948年,米歇尔(F. Mitchell)和雷恩(J. Lein)发现,红色链孢菌的一些突变体缺乏色氨酸合成酶,从而为“一个基因一个酶”的理论提供了第一个直接的证据。蛋白质是有机体基因型产生的最直接的表现型,决定了生物性状的表现形式。因此“一个基因一个酶”(后改为一个基因一个蛋白质)的理论为以后DNARNA蛋白质的“中心法则”提供了理论基础,对认识基因控制遗传性状的机制具有重要意义。1958年,伽罗德和塔特姆获得诺贝尔奖。

 

DNA双螺旋结构的确立

 

1951年,沃森在意大利参加了一个生物大分子结构的学术会议,会上听了英国国王大学威尔金斯关于DNAX-射线晶体学的研究结果的报告十分兴奋。沃森是噬菌体小组领袖人物卢里亚的研究生。博士毕业后,被卢里亚送到丹麦哥本哈根的克卡尔(Herman Kacker)实验室做有关核酸的生物化学方面的研究。这使他迅速熟悉了核酸方面的知识,并确认基因的本质是DNA。他认识到,要解开基因的功能之谜,必需首先弄清DNA的结构。威尔金斯的工作给了他极大的启示,在卢里亚的支持下,他来到了当时世界生物大分子结构研究的中心——剑桥的卡文迪许实验室。在这里,他与弗朗西斯·克里克(Francis Crick)相遇。克里克毕业于伦敦科里基大学物理系,二战期间在军队从事过磁铁矿方面的研究。战后在薛定锷《生命是什么》一书的影响下,转向生物学研究。当时作为一名博士研究生正在佩鲁兹研究小组参加血红蛋白结构的研究。沃森的到来,使他了解了DNA研究的新进展。他们一致认为,搞清楚DNA的结构是揭示基因奥秘的关键所在。伦敦国王学院的威尔金斯是克里克的朋友,这使他们很容易地获得威尔金斯小组对核酸研究的新成果。沃森和克里克的合作,可以看成是生物学研究中,信息学派和结构学派结合。这个结合最终导致DNA双螺旋结构的发现。

 

在沃森—克里克开始着手研究DNA结构之时,对DNA结构的资料还是比较零散的。当时已知:1DNA是由腺嘌呤(A),鸟嘌呤(G),胸腺嘧啶(T),胞嘧啶(C4种核苷酸组成;2。每个核苷酸的糖基因以共价键的方式与另一个核苷酸的磷酸基因结合,形成糖—磷酸骨架;3。这些核苷酸长链具有规则的螺旋状结构,每3.4埃重复一次。但DNA分子究竟是由几条核苷酸链组成,以及链与链之间通过什么方式组成螺旋状分子,则仍然不清楚。1951年沃森—克里克曾提出一个三螺旋模型,1952年,鲍林也提出了一个三链模型,但随即被否定,因与已知的DNA X-射线衍射结果不相符。DNA双螺旋结构的确立主要由于以下的研究成果:11952年,沃森在威尔金斯那儿看到了富兰克林在1951年拍摄的一张水合DNAX-线衍射图,图片上的强烈的反射交叉清楚地显示了DNA是双链结构。这张图给沃森印象极为深刻,决定建立DNA的双链模型;21952年数学家格里菲斯(J. Griffith)通过对碱基间的结合力计算,表明ATGC之间相互吸引的证据。同时从查伽夫(F. Chargaff)早先已确定的,DNA分子中,嘌呤碱与嘧啶碱之比为1:1的当量定律,也排除了碱基同型配对的可能性。此外,多诺休(J. Donohue)指出了碱基的互变异构现象。这些结果都肯定了DNA的二条核苷链中,A-TG-C的碱基配对原则;31952年,富兰克林DNAX-线衍射结果已经准确地推测出,双链分子糖—磷酸骨架在外侧,碱基在内侧的结论。富兰克林还推测出配对碱基的距离为20埃,旋距为3.4埃。

 

根据上述资料,1953年沃森—克里克提出了一个DNA双螺旋模型。这个结构符合已知的有关DNA的实验资料,弃提示了DNA分子复制的可能方式,因而立即受到科学界的重视并很快被接受。DNA双螺旋结构的发现,标志着分子生物学的诞生。此后的15年间,分子生物学取得迅速发展,其中具有重要意义的进展有:

 

1, 1968年克里克在他的《论蛋白质的作用》一文中,提出了遗传信息的流向是DNA-RNA-蛋白质的著名的“中心法则”。1970年蒂明(Howard Temin)和巴尔的摩(David Baltimore)分别在RNA肿瘤病毒颗粒中发现“依赖RNADNA转录酶”(逆转录酶),证明了遗传信息也可以从RNA流向DNA,从而完善了中心法则的内容。1975年,蒂明和巴尔的摩获诺贝尔生理学或医学奖。

 

2,1954年伽莫夫第一次把决定一个氨基酸的核苷酸组合称之为遗传密码,并提出了“重叠式三联密码”假说。他通过计算给出了64种可能的三联密码。伽莫夫的假说的问题是:1,重叠密码是错误的;2,认为DNA直接指导蛋白质合成是错误的。1961年克里克和布倫纳(S.Brenner)通过实验和统计分析否定了遗传密码的重叠问题,提出了“非重叠式三联密码”的假说,并通过实验获得证实。同年,尼倫伯格(M.W.Nirenberg)用生物化学的方法及体外无细胞合成体系,首次成功地确定了三联尿嘧啶UUU.是苯丙氨酸的密码子,揭开了破译三联密码的序幕。到1966年就完成了所有20种氨基酸的密码表1968年,尼伦伯格获诺贝尔生理学或医学奖。

 

3,.基因表达调控的“操纵子学说”的提出。1960年法国科学家莫诺(J. Monod)和雅各布(F.Jacob)发表了“蛋白质合成的遗传调控机制”一文。在文章中他们正式提出了基因表达的操纵子学说。他们用大肠杆菌乳糖代谢调控系统为模型,揭示了半乳糖苷酶产生的基因调控机制,提出了结构基因、调节基因和操纵基因的概念,并证明了半乳糖苷酶(蛋白质)的产生正是这些基因相互作用的结果。操纵子学说的提出使对基因的研究从结构研究向功能研究的转变,为深入揭示基因控制生物性状(表型)的机制奠定了基础。1965年莫诺和雅各布获诺贝尔生理学或医学奖。操纵子理论有力地证实了美国科学家麦克林托克(B.Mclintock1951年在研究玉米遗传特性时提出的“跳跃基因”(转座子)的概念,为真核细胞基因调控的研究开辟了道路。1983年麦克林托克获诺贝尔生理学或医学奖。

 

4,基因工程枝术的诞生。1962年阿尔伯(W.Arber)提出细菌体内存在一种可以破坏外来DNA的酶。1970年史密斯(H.O.Smith)获得了第一个DNA限制性内切酶。纳桑斯则用内切酶将SV40病毒的DNA切割成一些特定的片段,并获得了此病毒基因组的物理图谱。1978年阿尔伯、史密斯和纳桑斯获诺贝尔生理学或医学奖。此后又陆续发现了DNA联接酶、DNA聚合酶,这些工具酶的发现为基因工程技术的出现奠定了基础。1971年美国科学家伯格(P. Berg)用限制性内切酶和联接酶将SV40DNA与入噬菌体的DNA片段连接在一起,形成的杂种分子在大肠杆菌中成功表达,使跨越物种的DNA重组成为现实。基因工程作为一项新技术诞生了,它不但为农业、畜牧业和医药产业的发展提供了广阔的发展空间,而且为进一步深入探索生命起源和开展人造生命(合成生物学)的研究提供了技术手段。伯格的工作为基因工程的诞生奠定了基础,1980年伯格获诺贝尔生理学或医学奖。

 

1953DNA双螺旋结构发现以来的半个多世记中,分子生物学按还原论的路径迅猛发展,取得了许多重要进展。进入21世记以来,人类基因组计划的完成,以及蛋白质组学等各种“组学”的出现,为从整体上认识遗传、变异、及个体发育等基本生物学现象开辟了新方向。早已认识到基因组完全相同的卵孪生子之间在遗传表型上可以表现明显差异,显示了基因型(Genotype)与表现型之间的复杂关系。近年来兴起的表观遗传学(Epigenetics)研究表明,基因组可以通过DNA甲基化(DNA methylation),基因印记,母体效应,基因沉默,RNA编辑等方式改变基因表达的方式。这样就为深入理解环境与遗传的关系提供了可能,从而对医学科学的发展产生深远的影响。

 

参考文献

 

1.        杨建邺:玻尔传。长春出版社 1999 P201

2.        Niels Bohr: Light and life  Nature 1933, 131:421

3.        Michel Morange: A history of Molecular Biology, First Harvard University press paperback edition 2000 P69.(此书2002年由昌增益译成中文,书名改为:21世纪生物学的分子革命 北京 科学出版社 2002 P68。本文主要按中文版引用,个别译文参考原书作了修正。)

4.        庚镇城:从物理学家到生物学大科学家——纪念马克斯·德尔布吕克逝世20周年 科技导报 2001,12:27

5.        Emory Ellis and Max Delbrück: The growth of Bacteriophage. J.Gen.Physiol 1939,22:365

6.        卢里亚著,颜青山等译:熊掌与鱼——一位诺贝尔奖得主的精神历程 北京 科学出版社 1999 P33,P70

7.        霍勒斯·贾德森著,李晓丹译:创世纪的第八天 上海 上海科学技术出版社 2005 1 P25

8.        Alfred D.Hershey and Martha Chase: Independent Functions of Viral Protein and Nucleic Acid in Growth of Bacteriophage J.Gen.Physiol 1952,36:39

9.        John Cairns, Gunther S.Stent, and James D.Watson (eds.): Phage and the origins of Moleculor Biology. Cold Spring Harbor Laboratory Press 1966

10.    埃尔温·薛定谔著,罗来欧,罗辽复译:生命是什么 长沙 湖南科学技术出版社 2005 1 2次印刷 P44,P54,P58,P61,P66,P67

11.    G.S.斯坦特著,杨纪柯等译校:分子遗传学 北京 科学出版社 1978年第1 P16,P17

12.    加兰.E.艾伦著,田洺译:20世纪的生命科学史 上海 复旦大学出版社 2000年第1 P218

13.    詹姆斯·沃森著,刘望夷等译:双螺旋——发现DNA结构的故事 北京 科学出版社 1984 1

14.    米歇尔·莫朗热著,昌增益译:二十世纪生物学的分子革命 北京 科学出版社 2002 1 P66

15.    G.S.斯坦特著,杨纪柯等译校:分子遗传学 北京 科学出版社 1978 1 P15,P17

16.    弗朗西斯·克里克著,吕向东,唐孝感译:狂热的追求——科学发现之我见 合肥 中国科学技术大学出版社 1994年第1 P187

17.    Editorial: The changing face of Biomedical research? Nature·Medicine 2000,6(2):113

18,谢蜀生:物理学家与分子生物学革命 北京大学学报(医学版)2007,39(4):445



https://wap.sciencenet.cn/blog-615675-661726.html

上一篇:科学史上创新药物发明的启示(二)
下一篇:科学知识的产生和确认:逻辑证实还是社会建构
收藏 IP: 218.249.94.*| 热度|

50 肖重发 邝志和 杨顺楷 王守业 吴桂生 唐凌峰 张志东 陈学雷 梁建华 黄寿光 孙学军 刘玉仙 许培扬 段世伟 毛宁 王达伟 滕立 徐大彬 于涛 唐常杰 茹永新 刘士勇 王洪君 戴德昌 刘建明 傅蕴德 乔中东 欧阳永长 杨立泉 王德华 应行仁 董志刚 张龙现 魏兆军 石磊 张珑 苏红 黄智生 张钫 杨金波 alibabamama zhuhong ddsers cly85 liuwenwenb biofans liuxiaoy yunmu ahsys hcsprings

该博文允许实名用户评论 评论 (17 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-3-28 19:31

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部