twhlw的个人博客分享 http://blog.sciencenet.cn/u/twhlw

博文

复杂与智能

已有 777 次阅读 2021-10-8 21:15 |个人分类:2021|系统分类:科研笔记

复杂性问题有时并不复杂,比如气候变暖和天气问题,从宏观算计的角度看,也许路人皆知且都有感觉(如中秋还在穿T恤,寒冬见不到冰溜溜),但从中观、微观计算的角度看,则很难实现精准化预测和预报,究其因,隐变量和干扰变量太多太杂之故吧?!

复杂性有很多种,有物理世界里的客观事实造成的,也有人类社会中的主观意识生成的,更有这两者混杂而成的既复又杂的结合物。

研究复杂性问题,最忌讳的是仅用数学形式化手段和框架去处理,忽略了东方系统思维中的整体观,犹如当前人工智能领域的研究一般,头疼医头,脚疼医脚,一会儿深度学习,一会儿强化学习,一会儿迁移学习,一会儿联邦学习,一会儿**学习……殊不知,这些学习的基和源就是不完备的数学形式化工具,都是建立在数据处理基础上的公理性逻辑体系,而复杂性系统中的那些非数据、非公理、非逻辑的种种因素和元素早已被过滤的一干二净了!人类学习中的“深度”、“强化”、“迁移”、“联邦”等是动词,而且可以千变万化、伸缩自如、弥聚有度,但在机械化复杂性研究和AI中却都变成了干巴巴的形容词,“深度”不会弯曲、“强化”不知隐藏、“迁移”不懂纵深、“联邦”不明跳跃,……,总是想用还原分析中的各种“复”描述、诠释、解决系统过程中的各样“杂”题,天真烂漫!

正可谓“空山不见人,但闻人语响”、“只在此山中,云深不知处”也是人工智能无法解决的复杂性问题吧!


IMG_20211007_163318.jpg


树上,思故乡


表面上看,各国智能化发展非常迅速:百舸争流,百花齐放,百家争鸣,一片热火朝天的景象,实际上,各国的智能化进程却都存在着一个致命的缺点,就是没能深入地处理人机融合的智能问题,尤其是深度态势感知问题。任何颠覆性科技进步都可回溯到基础概念的理解上,例如人的所有行为都是有目的的,这个目的性就是价值,目的性可以分为远中近,其价值程度也相应有大中小,除了价值性因果推理之外,人比人工智能更为厉害的还有各种变特征、变表征、变理解、变判断、变预测、变执行。严格地说,当前的人工智能技术应用场景很窄,属于计算智能和感知智能的前期阶段,不会主动地刻画出准确的场景和情境,而智能科学中最难的就是刻画出有效的场景或上下文,而过去和现代智能化的思路却是训练一堆人工智能算法,各自绑定各自的工程应用场景。一般而言,这些人工智能技术就是用符号/行为/联结主义进行客观事实的形式化因果推理和数据计算,很少涉及价值性因果关系判断和决策,而深度态势感知中的深度就是指事实与价值的融合,态、势涉及客观事实性的数据及信息/知识中的客观部分(如突显性、时、空参数等),简单称之为事实链,而感、知涉及主观价值性的参数部分(如期望、努力程度等),不妨称之为价值链,深度态势感知就是由事实链与价值链交织纠缠在一起的“双螺旋”结构,进而能够实现有效的判断和准确的决策功能。另外,人侧重于主观价值把控算计,机偏向客观事实过程计算,也是一种“双螺旋”结构。如何实现这两种“双螺旋”结构之间(时空、显著性、期望、努力、价值性等)的恰当匹配,是各国都没有解决的难题。

所谓主动态势感知技术就是通过人的算计制定出系统安全性测试计算程序,模仿故障点,进行故障前的测试、诊断等过程,主动暴露特定人机环境系统中的不足和缺陷,针对系统中的薄弱环节进行测试探查,犹如战场中的火力侦查,抑或电工维修作业中的耐压实验,以达到未雨绸缪、防患于未然之效果。

主动态势感知中的态、势、感、知测试或许与被动态势感知中的有所不同。


新书封面人机融合.jpg


复杂可以用来解释世界,智能可以用来改造世界




https://wap.sciencenet.cn/blog-40841-1307230.html

上一篇:人与隐系统的交互
下一篇:智能不时会违反逻辑常识

2 杨卫东 杨正瓴

该博文允许注册用户评论 请点击登录 评论 (2 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2021-12-4 04:51

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部