•Rotamer change of W156 in the highly conserved aromatic cage
•Tilting-twisting movements captured at the extracellular domain
•Rotamer change of L260 lead to formation of a continuous water pathway
•Chlorine ions penetrate into the intracellular vestibule
Our recently solved high-resolution structure of the serotonin 5-HT3 receptor (5-HT3R) delivered the first detailed structural insights for a mammalian pentameric ligand-gated ion channel. Based on this structure, we here performed a total of 2.8-μs all-atom molecular dynamics simulations to unravel at atomic detail how neurotransmitter binding on the extracellular domain induces sequential conformational transitions in the receptor, opening an ion channel and translating a chemical signal into electrical impulses across the membrane. We found that serotonin binding first induces distinct conformational fluctuations at the side chain of W156 in the highly conserved ligand-binding cage, followed by tilting-twisting movements of the extracellular domain which couple to the transmembrane TM2 helices, opening the hydrophobic gate at L260 and forming a continuous transmembrane water pathway. The structural transitions in the receptor's transmembrane part finally couple to the intracellular MA helix bundle, opening lateral ports for ion passage.
转载本文请联系原作者获取授权,同时请注明本文来自袁曙光科学网博客。
链接地址:https://wap.sciencenet.cn/blog-355217-971952.html?mobile=1
收藏