百元买百鸡或鸡兔同笼问题的DIKWP分析
段玉聪(Yucong Duan)
DIKWP-AC人工意识实验室
AGI-AIGC-GPT评测DIKWP(全球)实验室
DIKWP research group, 海南大学
引言
“百元买百鸡”和“鸡兔同笼”是经典的数学问题,涉及线性方程组的解法和逻辑推理。通过DIKWP模型的应用,我们可以更深入地分析这些问题,帮助学生理解其背后的数学和逻辑原理。
数据层(D)分析
目标:识别问题中的变量和限制条件。
过程:
确定问题中的关键变量:例如,鸡、兔的数量和价格。
收集限制条件:如总数量和总价值。
示例:在百元买百鸡问题中,有三种鸡(公鸡、母鸡、小鸡)和它们的价格,以及总数和总价限制。
信息层(I)分析
目标:从条件中提取有效的信息,如价格和数量关系。
过程:
分析每种鸡的单价和数量之间的关系。
确定如何将限制条件转化为可解的方程。
示例:设定公鸡、母鸡和小鸡的数量为x、y、z,根据价格和数量关系建立方程。
知识层(K)分析
目标:应用线性代数和逻辑推理解决问题。
过程:
使用线性方程组的知识来构建和解决问题。
逻辑推理判断解的合理性。
示例:构建方程组表示价格和数量的关系,然后求解方程组找到合理的解。
智慧层(W)分析
目标:避免将独立假设混合,保持问题的真实性。
过程:
识别和避免无效或不合逻辑的假设。
评估不同解法的有效性和效率。
示例:避免将公鸡和母鸡的数量限制混合使用,因为这可能导致错误的假设。
意图层(P)分析
目标:解决问题的同时,避免不必要的复杂度。
过程:
确定解决问题的最简方法。
保持解法的直观性和可理解性。
示例:寻找直接且易于理解的解法,如图解法或枚举法。
哲学思维在算法设计中的应用
准确性:强调问题描述的准确理解,确保解法的有效性。
合理性:通过合理的推理过程找到解答,避免不必要的复杂和误解。
创新性:鼓励学生探索多种解法,培养创新思维和问题解决技能。
结论
通过DIKWP模型的应用,百元买百鸡或鸡兔同笼问题的教学不仅涵盖了解决问题的技巧,还包括了逻辑推理、算法设计的哲学思维。这种综合的教学方法可以帮助学生深入理解数学问题背后的逻辑和原理,培养他们的综合思维能力和解决复杂问题的能力。
段玉聪,海南大学计算机科学与技术学院教授,博士生导师, 第一批入选海南省南海名家计划、海南省领军人才,2006年毕业于中国科学院软件研究所,先后在清华大学、首都医科大学、韩国浦项工科大学、法国国家科学院、捷克布拉格查理大学、意大利米兰比克卡大学、美国密苏里州立大学等工作与访学。现任海南大学计算机科学与技术学院学术委员会委员、海南大学数据、信息、知识、智慧、意图DIKWP创新团队负责人、兼北京信用学会高级顾问、重庆警察学院特聘研究员、海南省委双百人才团队负责人、海南省发明协会副会长、海南省知识产权协会副会长、海南省低碳经济发展促进会副会长、海南省农产品加工企业协会副会长、海南省人工智能学会高级顾问、美国中密西根大学客座研究员及意大利摩德纳大学的博士指导委员会委员等职务。自2012年作为D类人才引进海南大学以来,累计发表论文260余篇,SCI收录120余次,ESI高被引11篇,引用统计超过4300次。面向多行业、多领域设计了241件(含15件PCT发明专利)系列化中国国家及国际发明专利,已获授权第1发明人中国国家发明专利及国际发明专利共85件。2020年获吴文俊人工智能技术发明三等奖;2021年作为程序委员会主席独立发起首届国际数据、信息、知识与智慧大会-IEEE DIKW 2021;2022年担任IEEE DIKW 2022大会指导委员会主席;2023年担任IEEE DIKW 2023大会主席;2022年获评海南省最美科技工作者(并被推全国);2022年与2023年连续入选美国斯坦福大学发布的全球前2%顶尖科学家的“终身科学影响力排行榜”榜单。参与研制IEEE金融知识图谱国际标准2项、行业知识图谱标准4项。2023年发起并共同举办首届世界人工意识大会(Artificial Consciousness 2023, AC2023)。
数据(Data)可视为我们认知中相同语义的具体表现形式。通常,数据代表着具体的事实或观察结果的存在语义确认,并通过与认知主体已有认知对象的存在性包含的某些相同语义对应而确认为相同的对象或概念。在处理数据时,我们常常寻求并提取标定该数据的特定相同语义,进而依据对应的相同语义将它们统一视为一个相同概念。例如,当我们看到一群羊时,虽然每只羊可能在体型、颜色、性别等方面略有不同,但我们会将它们归入“羊”的概念,因为它们共享了我们对“羊”这个概念的语义理解。相同语义可以是具体的如识别手臂时可以根据一个硅胶手臂与人的手臂的手指数量的相同、颜色的相同、手臂外形的相同等相同语义进行确认硅胶手臂为手臂,也可以通过硅胶手臂不具有真实手臂的可以旋转对应的由“可以旋转”定义的相同语义,而判定其不是手臂。
信息(Information)则对应认知中不同语义的表达。通常情况下,信息指的是通过特定意图将认知DIKWP对象与认知主体已经认知的数据、信息、知识、智慧或意图联系起来,产生新的语义关联。在处理信息时,我们会根据输入的数据、信息、知识、智慧或意图,找出它们被认知的DIKWP对象的不同之处,对应不同的语义,并进行信息分类。例如,在停车场中,尽管所有的汽车都可以归入“汽车”这一概念,但每辆车的停车位置、停车时间、磨损程度、所有者、功能、缴费记录和经历都代表着信息中不同的语义。信息对应的不同语义经常存在于认知主体的认知中,常常未被显式表达出来,例如抑郁症患者可能用自己情绪“低落”来表达自己当前的情绪相对自己以往的情绪的下降,但这个“低落”对应的信息因为其对比状态不被听众了解而不能被听众客观感受到,从而成为该患者自己主观的认知信息。
知识(Knowledge)对应于认知中的完整语义。知识是通过观察和学习获得的对世界的理解和解释。在处理知识时,我们通过观察和学习抽象出至少一个完整语义对应的概念或模式。例如,通过观察我们得知所有的天鹅都是白色,这是我们通过收集大量信息后对“天鹅都是白色”这一概念的完整认知。
智慧(Wisdom)对应伦理、社会道德、人性等方面的信息,是一种来自文化、人类社会群体的相对于当前时代固定的极端价值观或者个体的认知价值观。在处理智慧时,我们会整合这些数据、信息、知识、智慧,并运用它们来指导决策。例如,在面临决策问题时,我们会综合考虑伦理、道德、可行性等各个方面的因素,而不仅仅是技术或效率。
意图(Purpose)可以看作是一个二元组(输入,输出),其中输入和输出都是数据、信息、知识、智慧或意图的内容。意图代表了我们对某一现象或问题的理解(输入),以及我们希望通过处理和解决该现象或问题来实现的目标(输出)。在处理意图时,人工智能系统会根据其预设的目标(输出),处理输入的内容,通过学习和适应,使输出逐渐接近预设的目标。
转载本文请联系原作者获取授权,同时请注明本文来自段玉聪科学网博客。
链接地址:https://wap.sciencenet.cn/blog-3429562-1413655.html?mobile=1
收藏