欧彦
城市固废焚烧过程炉温与烟气含氧量多目标鲁棒预测模型
2024-6-14 16:58
阅读:616

引用本文

 

胡开成, 严爱军, 汤健. 城市固废焚烧过程炉温与烟气含氧量多目标鲁棒预测模型. 自动化学报, 2024, 50(5): 10011014 doi: 10.16383/j.aas.c230430

Hu Kai-Cheng, Yan Ai-Jun, Tang Jian. Multi-target robust prediction model for furnace temperature and flue gas oxygen content in municipal solid waste incineration process. Acta Automatica Sinica, 2024, 50(5): 10011014 doi: 10.16383/j.aas.c230430

http://www.aas.net.cn/cn/article/doi/10.16383/j.aas.c230430

 

关键词

 

城市固废焚烧,炉温,烟气含氧量,随机配置网络,隐含层并行构造,多目标鲁棒建模 

 

摘要

 

为实现城市固废焚烧(Municipal solid waste incineration, MSWI)过程炉温与烟气含氧量的准确预测, 提出一种基于改进随机配置网络的多目标鲁棒建模方法(Multi-target robust modeling method based on improved stochastic configuration network, MRI-SCN). 首先, 设计了一种并行方式增量构建 SCN 隐含层, 通过信息叠加与跨越连接来增强隐含层映射多样性, 并利用参数自适应变化的监督不等式分配隐含层参数; 其次, 使用F范数与L2,1范数正则项建立矩阵弹性网对模型参数进行稀疏约束, 以建模炉温与烟气含氧量间的相关性; 接着, 采用混合拉普拉斯分布作为每个目标建模误差的先验分布, 通过最大后验估计重新评估 SCN 模型的输出权值, 以增强其鲁棒性; 最后, 利用城市固废焚烧过程的历史数据对所提建模方法的性能进行测试. 实验结果表明, 所提建模方法在预测精度与鲁棒性方面具有优势.

 

文章导读

 

城市固废焚烧(Municipal solid waste incineration, MSWI) 具有占地面积小、处理时间短、资源回收利用率高等优势, 是我国目前处理城市固废的首选方案[1]. MSWI过程控制的角度来看, 将焚烧炉的一燃室烟气温度均值(以下简称为炉温) 稳定控制在工艺要求的850 ℃以上、余热锅炉出口的烟气含氧量控制在6% ~ 9%, 才有可能使得炉内固废与可燃性烟气充分燃烧, 从而保障二次污染物(: 氮氧化物、强致癌物二噁英等) 的排放浓度达标[2-3]. 因此, 建立准确的炉温与烟气含氧量预测模型有利于操作人员或自动控制系统及时发现焚烧炉运行状况的变化, 从而采取相应的措施来避免异常情况的发生, 对实现MSWI过程的平稳、高效、环保运行具有重要的现实意义.

 

目前, 针对MSWI过程的炉温与烟气含氧量建模方法主要有机理建模与数据驱动建模两种. 例如: 从能量守恒与物料守恒的角度出发, 利用物理、化学方程式建立固废焚烧炉与余热锅炉的机理模型, 通过分析进料量、风量、炉排速度等参数对炉温与烟气含氧量的影响, 可为MSWI过程的优化控制提供指导[4-5]. 然而, 由于焚烧炉类型不同、固废组分复杂、模型简化等因素的影响, 基于机理的炉温与烟气含氧量建模方法难以推广应用, 且模型精度往往无法满足实际应用需求. 值得注意的是, MSWI过程中存在丰富的运行数据, 这些离线或在线数据中隐含了设备与工艺参数的变化信息, 在这种情况下, 研究基于数据驱动的炉温与烟气含氧量建模方法可有效避免机理建模的局限性.

 

由于神经网络具有较好的非线性学习能力, 在数据驱动参数建模领域受到研究人员的广泛关注[6-7]. MSWI过程参数建模方面, 文献[8]利用基于梯度下降算法的自组织T-S模糊神经网络来预测炉温的变化趋势. 文献[9]利用卷积神经网络对数据增强后的焚烧火焰图像进行智能识别, 其识别结果可为现场操作人员修正焚烧控制策略提供参考. 文献[10]则采用改进的长短时记忆神经网络建立烟气含氧量预测模型, 并在控制过程中根据实际工况在线更新模型参数. 但梯度下降算法在进行网络参数学习时易陷入局部最优, 且模型训练周期较长. 为提升神经网络的建模效率, 以随机向量函数链网络(Random vector functional link, RVFL)[11] 为代表的随机权神经网络相继被提出, 但这类网络一般在固定区间内随机生成隐含层节点参数, 其通用逼近性有时难以保证, 且网络结构需预先指定. 于是, 文献[12]提出了随机配置网络(Stochastic configuration network, SCN), SCN在可变区间内通过监督机制配置隐含层新增节点参数以增量构建学习网络, 并利用最小二乘法计算输出权值. 与基于梯度下降算法的误差反传网络、径向基神经网络等相比, SCN的建模效率与精度相对较高, 在污水处理[13]、金属热轧[14]、原油提炼[15]等工业过程中得以成功应用. 因此, 文献[16]SCN与递推最小二乘法相结合, 构建了炉温动态预测模型, 并将其用于炉温非线性模型预测控制中. 文献[17]以正则化SCN为基模型, 提出一种异构特征与负相关学习策略的集成建模方法来提升炉温预测模型的准确性与训练效率. 然而, 上述均是针对炉温或烟气含氧量单目标进行建模, 难以为MSWI过程的多目标协同优化控制提供全面的预测信息. 文献[18]针对MSWI过程构建了基于T-S模糊神经网络的多目标被控对象模型, 但其未利用炉温与烟气含氧量等多目标间的相关性来提升建模精度. 此外, 固废焚烧环境十分复杂, 从现场采集到的数据中不可避免地包含噪声或离群点, 上述方法还未充分考虑这些异常数据对模型准确性的负面影响.

 

综上所述, 为实现对MSWI过程炉温与烟气含氧量的准确预测, 本文以建模效率高且具有通用逼近性的SCN为基础, 提出一种基于改进SCN的多目标鲁棒建模方法(Multi-target robust modeling method based on improved SCN, MRI-SCN) 以促进MSWI过程的平稳高效运行, 进而提升固废焚烧发电量、降低二次污染物排放浓度. 本文主要工作如下: 1) 在参数自适应的不等式监督机制下, 采用并行构造的方式配置隐含层节点, 以增强模型的非线性映射能力; 2) 利用矩阵弹性网将炉温与烟气含氧量间的相关性假设转化为对模型参数的稀疏约束, 以提高建模精度; 3) 将混合拉普拉斯(Laplace) 分布作为每个目标建模误差的先验分布, 并使用最大后验估计来优化SCN模型的输出权值, 以降低其对异常数据的敏感性. 通过实验验证了所提建模方法的有效性.

 

本文余下部分的组织结构安排是: 1节是MSWI工艺流程描述与建模分析; 2节介绍MRI-SCN建模方法的实现过程; 3节是实验测试与结果分析; 最后总结全文并提出展望.

 1  MSWI 工艺流程

 2  前馈神经网络隐含层构造方式

 3  不同范数约束在原始数据集上的实验结果

 

为准确预测MSWI过程的炉温与烟气含氧量, 提出了一种基于改进SCN的多目标鲁棒建模方法(MRI-SCN), 并通过实验验证了MRI-SCN建模方法的有效性与优越性. 主要贡献总结如下:

第一, 将标准前馈与级联构造相融合, 在参数自适应的不等式监督机制下分配隐含层参数, 从而增强了SCN隐含层映射多样性, 并提高了模型参数的配置效率.

第二, 利用F范数与L2,1范数正则项构建矩阵弹性网对模型输出权值进行稀疏约束, 利用炉温与烟气含氧量之间的相关性进一步提升了建模精度.

第三, 将混合Laplace分布作为每个目标建模误差的先验分布, 并采用最大后验估计重新评估SCN模型的输出权值, 使学习到的模型具有良好的鲁棒性.

 

实验结果表明, 在异常数据影响下, 基于MRI-SCN建立的预测模型可以较为准确地预测炉温与烟气含氧量的变化趋势, 从而为MSWI过程的多目标协同优化控制奠定了良好的基础, MRI-SCN建模方法在工业过程参数预测建模领域具有一定的应用潜力. 考虑到MSWI过程的参数变化具有时变性, 提升MRI-SCN模型对复杂工况的自适应能力是后续研究工作的重点.

 

作者简介

 

胡开成

北京工业大学信息学部博士研究生. 主要研究方向为复杂过程建模与智能优化控制. E-mail: hukaicheng@emails.bjut.edu.cn

 

严爱军

北京工业大学信息学部教授. 主要研究方向为复杂过程建模与智能优化控制. 本文通信作者. E-mail: yanaijun@bjut.edu.cn

 

汤健

北京工业大学信息学部教授. 主要研究方向为小样本数据建模, 城市固废处理过程智能控制. E-mail: freeflytang@bjut.edu.cn

转载本文请联系原作者获取授权,同时请注明本文来自欧彦科学网博客。

链接地址:https://wap.sciencenet.cn/blog-3291369-1438215.html?mobile=1

收藏

分享到:

当前推荐数:0
推荐到博客首页
网友评论0 条评论
确定删除指定的回复吗?
确定删除本博文吗?