|||
PCNM (Principal Coordinates of Neighbourhood Matrix)是Legendre教授等开发出的表示空间关系的方法,类似于pcoa。常用于生物多样性空间格局研究中,例如在古田山beta多样性研究中,Legendre(2009)就使用了这种方法。用样地的规则栅格距离可以对点两两之间的距离关系进行PCNM模拟。 这里用到了vegan程序包将距离矩阵转换成PCNM的特征向量,用imagevect函数绘制PCNM特征向量在样地中的分布。希望对有兴趣的研究人员有帮助。
将以下代码在R中运行即可。
#### Function imagevect #### By Jinlong Zhang <Jinlongzhang01@gmail.com> #### Institute of Botany, the Chinese Academy of Sciences, Beijing ,China #### Aug. 18, 2011 imagevect <- function (x, labels, contour = FALSE, gridsize = 20, axes = TRUE, nlabx = 5, nlaby = 5, ...) { require(fields) dimension <- function(x, unique = FALSE, sort = FALSE){ ncharX <- substring(x, 2, regexpr("Y", x)-1) ncharY <- substring(x, nchar(ncharX)+3, nchar(x)) if(unique){ ncharX = unique(ncharX) ncharY = unique(ncharY) } if(sort){ ncharX = sort(as.numeric(ncharX)) ncharY = sort(as.numeric(ncharY)) } res <- list(ncharX, ncharY) return(res) } formatXY <- function(x){ ncharX <- substring(x, 2, regexpr("Y", x)-1) ncharY <- substring(x, nchar(ncharX)+3, nchar(x)) resX <- c() for(i in 1:length(ncharX)){ n0x <- paste( rep(rep(0, length(ncharX[i])), times = (max(nchar(ncharX)) - nchar(ncharX[i]) + 1)), collapse = "", sep = "") resX[i] <- paste("X", substring(n0x, 2, nchar(n0x)), ncharX[i], collapse = "", sep = "") } resY <- c() for(i in 1:length(ncharY)){ n0x <- paste( rep(rep(0, length(ncharY[i])), times = (max(nchar(ncharY)) - nchar(ncharY[i]) + 1)), collapse = "", sep = "") resY[i] <- paste("Y", substring(n0x, 2, nchar(n0x)), ncharY[i], collapse = "", sep = "") } res <- paste(resX, resY, sep = "") return(res) } sort.x <- x[order(formatXY(labels))] rrr <- dimension(labels, unique = TRUE, sort = TRUE) dims <- c(length(rrr[[2]]), length(rrr[[1]])) dim(sort.x) <- dims par(xaxs = "i", yaxs = "i") image.plot(nnn <- t(sort.x), axes = FALSE, ...) if (contour) { contour(nnn, add = TRUE, ...) } if (axes) { points(0, 0, pch = " ", cex = 3) ## invoke the large plot get.axis.ticks <- function(nlabs = NULL, gridsize = NULL, limit_max = NULL){ ngrid <- (limit_max-0)/gridsize ## Obtain number of labels to plot per_grid <- 1/(ngrid-1) ## Obtain length for each grid start <- 0 - (1/(ngrid-1))/2 ## starting point for the ticks stop <- 1 + (1/(ngrid-1))/2 ## stopping point for the ticks lab <-(0:nlabs*(limit_max/nlabs)) at <- seq(from = start, to = stop, by = ((1 + per_grid))/((length(lab)-1))) ## Position of the ticks return(list(lab, at)) } xaxis.position <- get.axis.ticks(nlabs = nlabx, gridsize = gridsize, limit_max = gridsize * nrow(nnn)) yaxis.position <- get.axis.ticks(nlabs = nlaby, gridsize = gridsize, limit_max = gridsize * ncol(nnn)) axis(1, labels = xaxis.position[[1]], at = xaxis.position[[2]]) axis(2, labels = yaxis.position[[1]], at = yaxis.position[[2]]) } invisible(nnn) } library(vegan) ## 模拟一套数据 X <- seq(10, 590, by = 20) Y <- seq(10, 390, by = 20) ## Label XY <- expand.grid(X, Y) names <- paste("X", (XY[,1] + 10)/20 ,"Y", (XY[,2] + 10)/20 , sep = "") rownames(XY) <- names ## 计算样方两两之间的距离 distXY <- dist(XY) ## 进行pcnm gtsPCNM <- pcnm(distXY) head(gtsPCNM$vectors) ## 绘制pcnm图 for(i in 1:10){ imagevect(gtsPCNM$vectors[,i], labels = names, col = topo.colors(100)) Sys.sleep(0.3) }
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-27 08:00
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社