全球变化- 杨学祥工作室分享 http://blog.sciencenet.cn/u/杨学祥 吉林大学地球探测科学与技术学院退休教授,从事全球变化研究。

博文

厄尔尼诺的成因及作用、地球自转和圈层差异旋转(修改稿)

已有 6976 次阅读 2015-2-16 15:23 |个人分类:学术争论|系统分类:论文交流| 地球自转, 厄尔尼诺, 月亮赤纬角, 圈层差异旋转

               厄尔尼诺的成因及作用、地球自转和圈层差异旋转(修改稿)

                            杨冬红,杨学祥

 

摘要:综合分析表明,太阳在赤道面,赤道东风加强,海洋南北赤道暖流加强,有利于拉尼娜的形成;太阳在南北回归线(22.5度),赤道东风减弱,赤道和35度线以上的西风带加强,纬度60o左右南北两个多风暴带活动强烈,海洋的中纬度西风漂流带加强,有利于厄尔尼诺的形成。月亮潮周期地增强或减弱了这一效应,形成厄尔尼诺和拉尼娜的交替发生[16]

地球圈层差异旋转对厄尔尼诺影响有三种模式:激发赤道东西风转换,改变大气环流位置,导致西太平洋暖池东西移动。

 

一、地球的章动及其原因

 

章动是在行星或陀螺仪的自转运动中,轴在进动中的一种轻微不规则运动,使自转轴在方向的改变中出现如“点头”般的摇晃现象。

行星的章动来自于潮汐力所引起的进动,并使得岁差的速度不是常数,而会随着时间改变。这种现象是英国的天文学家詹姆斯·布拉德利在1728年发现的,但直到20年后才得到解释。

在地球,潮汐力主要来自太阳和月球,两者持续的改变彼此间相对的位置,造成的地球自转轴的章动。地球章动最大分量的周期是18.6年,与月球轨道交点的进动周期相同,然而,在更精确的的计算中还有其他值得注意的周期项目需要被加入。

章动的主要项目来自于月球交点的退行,两者有相同的周期,都是6798天(18.6年),在黄道上的黄经章动分量是17.24",垂直于黄道的斜章动是9.21"。另一个较明显的周期是183天(0.5年),章动分量分别是1.3"0.6",是黄赤交角造成的。


1 日月引潮力产生的地球章动(网上资料)

 

二、日月引力对地球自转的影响

 

受日月引潮力的影响,地球自转也有明显的0.5年和18.6年周期。前者与地球赤道和地球轨道面(黄道面)的夹角,即黄赤交角有关,后者与地球赤道面和月球轨道面(白道面)的夹角,即白赤交角(亦称为月亮赤纬角)有关。

冬至时太阳光直射南回归线,白天太阳潮在南回归线达到最高潮,夜间太阳潮在南回归线达到最低潮,地球自转造成太阳高潮在南北回归线之间南北摆动,地球扁率也相应变小,导致地球自转加速,夏至也有类似变化。相反,在春分和秋分,太阳在赤道米难,太阳潮南北摆动消失,地球扁率变为最大,地球自转速度变为最小。18.6年周期的月亮赤纬角变化对这一过程起到增强或减弱作用,不同年份有所不同。

实际上,每年4月9日-7月28日(110天)及11月18日-1月23日(66天)为地球自转加速阶段;1月25日-4月7日(72天)及7月30日-11月6日(109天)为地球自转减速阶段。以此形成地球自转的0.5年周期。

月亮赤纬角极大值在18.6度至28.6度之间变化,从而导致地球自转变化的18.6年周期。

 


2  黄道面、白道面和天球(网上资料)

 

2 给出了黄道面和白道面在天球中的位置,它们与赤道面的夹角分别为23.5度和28.6度,它们之间的夹角约为5度。

如果把大气圈和海洋圈作为一个整体来计算,而不仅仅是其表层流动,那么,应用三轴椭球体转动惯量计算公式的计算结果表明,当太阳的位置由南北回归线移向赤道,岩石圈的日长增量dT =0.00027s,相当于1/3704s,它是春分和秋分时的地球自转速度小于夏至和冬至时的自转速度的原因。当地球由远日点运动到近日点时,太阳引潮力增加10%,得日长增量dT= 0.00007s,相当于1/14286s。这使远日点的地球自转速度大于近日点的自转速度,从而使远日点处的增减速时间变长,近日点处的增减速时间变短。实际上,每年4月9日-7月28日(110天)及11月18日-1月23日(66天)为地球自转加速阶段;1月25日-4月7日(72天)及7月30日-11月6日(109天)为地球自转减速阶段。快慢时段的昼夜时间(日长)长短的差别不超过几千分之一秒,但是这种变化可以影响到气象事件,与计算值量级完全相符。

月亮引潮力是太阳引潮力的2.17倍,月亮赤纬角(即白赤交角)为18.6度(最小值时期)或28.6度(最大值时期),黄赤交角为23.5o。所以,月亮赤纬角变化可使日长发生0.6 ms的变化,在受到太阳干扰或增强时,日长变化振幅可达0.3-0.9 ms。在图5中,从月亮赤纬角最大值到最小值引起的地球形变,使地球自转加速,日长产生2.5ms(毫秒)的变化。计算值与测量值完全相符。

1 物质密度、潮汐振幅和日长变化

 

密度 g/cm3

潮汐振幅 cm

日长增量 s

赤道线速度cm/s

大气圈

0.00129

46520

0.628

0.3372

海洋圈

1

60

0.00081

0.000435

岩石圈

3

20

0.00027

0.000145

 

应用三轴椭球壳转动惯量计算公式的计算结果表明,地球各圈层潮汐形变的规模不相同,大气圈的起伏约为1163000px,海洋圈的起伏大约为1500px,固体地球的起伏约为500px,比例为2326:3:1,速度增量比也为2326:3:1。可以对比的是,空气、水、地壳的密度比为3:1:0.00129,是2326:3:1的倒数。当太阳的位置由南北回归线移向赤道,岩石圈的日长增量dT =0.00027s,海洋圈的日长增量为0.00081s,大气圈的日长增量为0.628s。


3 地球在冬至时太阳潮南北震荡

 

赤道处的地表线速度为v = 465m/s,日长T=24小时=86400s,地球的岩石圈、水圈和大气圈的线速度增量dv分别为-0.003625px/s-0.010875px/s-8.425px/s,即地球各圈层自转减慢(见表1)。以岩石圈为参照,水圈相对减慢最少,气圈相对减慢最多。这导致赤道东风增强,赤道太平洋热水集中在西太平洋,有利于拉尼娜事件的形成,对应时间为3月末或9月末(春分320-22日,秋分922-24日,太阳在赤道面上)。

而在6月末或12月末(夏至62122日,冬至1221-23日)日月大潮发生在南北回归线附近,地球各圈层自转加快。以岩石圈为参照,水圈相对加快最少,气圈相对加快最多。这导致赤道东风减弱,赤道太平洋热水回流到东太平洋,有利于厄尔尼诺事件的形成,对应时间为6月末或12月末,与季节性厄尔尼诺现象发生在1225圣诞节附近的季节性特征相符。季节性厄尔尼诺现象发生在12月末的原因还在于,每年13日或4日为地球轨道近日点,太阳引潮力增大10.2%,与1118-12366天)地球自转加速阶段相对应。冬至为122223日,离地球轨道近日点134日很近,太阳潮最强。引起的地球扁率变化也最显著。季节性厄尔尼诺现象发生在每年的1225圣诞节附近,就是潮汐改变地球扁率,影响地球自转、大气环流和海洋环流的最好证明。

http://blog.sciencenet.cn/blog-2277-805253.html

 

三、地球圈层差异旋转对厄尔尼诺影响的三种模式

 

模式一:激发赤道东风或西风增强。

模式二:圈层差异旋转导致大气环流模式相对海洋和大陆的位置改变(见图4)。


4 大气圈和海洋圈差异旋转导致大气环流位置相对海洋和岩石圈的改变,激发环流方向改变

模式三:圈层差异旋转导致海洋和岩石圈的位置改变,激发西太平洋暖池东西移动,引发厄尔尼诺或拉尼娜发生(见图5)。


5 海洋圈相对岩石圈的东移导致西太平洋暖池东移(图为网上资料)

 

一个最明显的证据是,在月亮赤纬角最大值时期,潮汐南北摆动幅度最大,形成大气圈、海洋圈和岩石圈的差异旋转的规模也最大,厄尔尼诺和拉尼娜形成的可能性也最大。

 

2 月亮赤纬角最大值与厄尔尼诺和拉尼娜对比

最大值

1913-1915

1931-1933

1949-1951

1968-1970

1986-1988

2005-2007

厄尔尼诺

1912-1914

1930-1932

19481951

1968-1970

1986-1988

2006

拉尼娜

1916

1933,1934

1949

1970

1988

2007

 

四、厄尔尼诺的作用

 

温室气体持续增加,全球气温却波动变化。温室效应难以解决气候波动变化问题,我们必须寻找新的思路:在温室气体使气温持续上升的背景下,研究自然因素综合叠加效应对气候波动变化的影响。

变冷的自然指标:

1. 强潮汐使气候变冷,周期为1800年,小冰期时期进入变冷高峰(Keeling,2000)。此外,还有200年、55年周期(杨冬红等,2007,2011)。

2. 拉马德雷冷位相使气候变冷,周期为55年,2000-2030年为拉马德雷冷位相;

3. 月亮赤纬角最大值导致气候变冷,周期为18.6年(杨冬红等,2008);

4. 海洋及其边缘特大地震和海啸使气候变冷(郭增建,2002);

5. 拉尼娜事件导致全球变冷。

如果这5个因素同时出现,叠加效应将导致最冷气候(见表1-3,图1)。

 

3 1947-1999年拉马德雷现象与月亮赤纬角的叠加对气温变化影响

 

1947-1976年拉马德雷冷位相

1977-1999年拉马德雷暖位相

月亮

赤纬角

1949-1951

最大值

1959-1961

最小值

1968-1970

最大值

1777-1779

最小值

1886-1888

最大值

1995-1997

最小值

气温变化

最小值

最大值

最小值

最大值

最小值

最大值

气温均值

      低温时期

         高温时期

厄尔尼诺升温

1951195719631965196919721976

19821986198719911997

拉尼娜降温

19491954195519561964

19671970197119731975

198419881999

特大地震降温

1950195219571960196319641965

8.5级以上地震

注:?表示预测,厄尔尼诺和拉尼娜来自赵得秀教授的预测。

4 2000-2052年拉马德雷现象与月亮赤纬角的叠加对气温变化影响

 

2000-2030年拉马德雷冷位相

2031-1055年拉马德雷暖位相

月亮

赤纬角

2005-2007

最大值

2014-2016

最小值

2023-2025

最大值

2032-2034

最小值

2041-2043

最大值

2050-2052

最小值

气温变化

最小值

变暖停滞

最大值

最新记录

最小值?

明显变冷

最大值?

最小值?

最大值?

气温均值

      低温时期

         高温时期

厄尔尼诺升温

20022006200920152018202220252029

20332036204020432047

拉尼娜降温

200020072010201120132019

20232028

20312035203920422046

特大地震降温

200420052007201020112012

 

注:?表示预测,厄尔尼诺和拉尼娜来自赵得秀教授的预测。

5 PDO的冷暖位相下El NinoLaNina事件发生年份(吕俊梅等,2005

PDO冷暖位相

       厄尔尼诺事件年份

  拉尼娜事件年份

1909-1924年(冷)

191119131918

19091910191619221924

1925-1945年(暖)

1925192919301940

193819421944

1946-1976年(冷)

 

1951195719631965

196919721976

19491954195519561964

19671970197119731975

1977-1999年(暖)

19821986198719911997

198419881999

 

变暖的自然指标:

1. 弱潮汐使气候变暖,周期为1800年,目前进入变暖高峰(Keeling,2000)。此外,还有200年、55年周期(杨冬红等,2007,2011);

2. 拉马德雷暖位相使气候变暖,周期为55年,1977-1999年为拉马德雷暖位相;

3. 月亮赤纬角最小值导致气候变暖,周期为18.6年(杨冬红等,2008);

4. 海洋及其边缘特大地震和海啸间歇期使气候变暖(郭增建,2002);

5. 厄尔尼诺事件导致全球变暖。

如果这5个因素同时出现,叠加效应将导致最暖气候(见表3-5,图6)。

 


    6 1890-2014年全球气温、拉马德雷、厄尔尼诺、拉尼娜关系对比

 

1999-2013年全球变暖停滞和2014年最热年证实了我们的预测,此后40年会继续证实。http://blog.sciencenet.cn/blog-2277-867359.html

 

6  月亮赤纬角、黄河水量变化、旱涝年对比

   

1923-1925

1932-1934

1941-1943

1950-1952

1959-1960  

1968-1970

最小值

最大值

最小值

最大值

最小值

最大值

黄河上游

枯水期

丰水期

枯水期

丰水期

枯水期

丰水期

潮汐强度

潮汐南北震荡强度相对较弱(一大两小)

潮汐南北震荡强度相对较强(两大一小)

1941-1942

1959-1961    

193319351938  

1958        1964

拉马德雷

1925-----(暖位相)--------------1946

1947---------(冷位相)-------------1976

   

1925-19458.5级以上大震减弱(1)

1946-19778.5级以上大震强烈(11)

全球气温

20-30年代气候变暖

60-70年代气候变冷

   

1977-1978

1986-1988

1995-1997

2005-2007

2014-2016

2024-2026

最小值

最大值

最小值

最大值

最小值

最大值

黄河上游

枯水期

丰水期

枯水期

丰水期

枯水期?

丰水期?

潮汐强度

潮汐南北震荡强度相对较弱(一大两小)

 潮汐南北震荡强度相对较强(两大一小)

1978                      1997--2002

 

      1981(黄河特大水)

2005(黄河大水)

拉马德雷

1977----------(暖位相)-------------1999

2000----(冷位相)-------2030

   

1978-20038.5级以上大震消失

2004年以后8.5级以上大震强烈(2次)

全球气候

80年代后全球迅速变暖

变冷?












 

   6是我们在2006年做出的统计分析和预测,可与表3-5作对比。

 

五、结论

 

潮汐变化引起的地球各圈层扁率变化是地球各圈层差异旋转的原因,对大气环流和海洋环流的分布和变化有明显的影响。大气环流和海洋环流分布的纬度特征与地球扁率变化的纬度特征完全一致。

由于流体的流动性,如果把大气圈和海洋圈的扁率变化看作是表层的部分流体流动过程,那么,在地球扁率变大时,赤道上空的高速气流,应该与地球自转方向相反的由东向西运动,类似赤道东风带,在外空间看来几乎静止不动;在地球扁率变小时,大气赤道突起减小并向两极流动,在南北纬35度不变线以外的中高纬度地区,形成两极突起,在南北纬62度线达到最高值,旋转方向与地球自转方向相同,速度加快,类似中纬度地区的西风带。这一变化规律与星体大小以及形变规模无关。赤道高空风相对固体地球向西的最大速度为442m/s,中纬度高空风向东的最大速度为339m/s。实际上,由于流体间的角动量交换和阻力,高空风的实际速度要远远小于这个数值,但方向与实际状况有很好的对应性。

综合分析表明,太阳在赤道面,赤道东风加强,海洋南北赤道暖流加强,有利于拉尼娜的形成;太阳在南北回归线(22.5度),赤道东风减弱,赤道和35度线以上的西风带加强,纬度60o左右南北两个多风暴带活动强烈,海洋的中纬度西风漂流带加强,有利于厄尔尼诺的形成。月亮潮周期地增强或减弱了这一效应,形成厄尔尼诺和拉尼娜的交替发生[16]

地球圈层差异旋转对厄尔尼诺影响的三种模式:激发东西风转换,改变大气环流位置,导致西太平洋暖池东移。

计算和观测数据表明,厄尔尼诺和拉尼娜具有18.6年的月亮赤纬角极值变化周期,厄尔尼诺和拉尼娜下次月亮赤纬角最大值时期,2023-2025年发生厄尔尼诺和拉尼娜的可能性非常大。

日食条件也是圈层差异旋转重要的判别标准:多次日食在两极使地球扁率变小,自转变快,可发生厄尔尼诺事件(日食-厄尔尼诺系数大于10),多次日食在赤道使地球扁率变大,自转变慢,可发生拉尼娜事件(日食-厄尔尼诺系数小于-2)。

1997年和2015年日食-厄尔尼诺系数为121998年为-21997年发生了最强厄尔尼诺事件,1998-2000年发生了最强拉尼娜事件;2015年日食-厄尔尼诺系数为122016年为-2 2015年的厄尔尼诺和2016年的拉尼娜发生的概率超过50%

 

参考文献

1.  杨冬红,杨学祥,刘财。20041226印尼地震海啸与全球低温。地球物理学进展。2006213):1023-1027

2.  杨冬红,杨学祥。全球变暖减速与郭增建的“海震调温假说”。地球物理学进展。2008 Vol. 23 (6): 18131818

3.  杨冬红,杨德彬。日食诱发厄尔尼诺现象的热-动力机制。世界地质。2010294):652-657.

4.  杨冬红,杨德彬,杨学祥。地震和潮汐对气候波动变化的影响。地球物理学报。2011544):926-934.

5.  杨冬红, 杨学祥. 地球自转速度变化规律的研究和计算模型. 地球物理学进展, 2013281):58-70




https://wap.sciencenet.cn/blog-2277-868448.html

上一篇:北京气温较常年偏高:并非厄尔尼诺惹的祸
下一篇:2015年厄尔尼诺:今年干旱明年洪涝
收藏 IP: 222.168.41.*| 热度|

3 钟炳 杨文祥 毛克彪

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-5-29 02:43

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部