革命性之光:突破性的频率梳转换光子学
诸平
据瑞士洛桑联邦理工学院(Ecole Polytechnique Fédérale de Lausanne简称EPFL/ Swiss Federal Institute of Technology Lausanne , Lausanne, Switzerland)2025年1月25日提供的消息,革命性之光:突破性的频率梳转换光子学(Revolutionizing Light: The Breakthrough Frequency Comb Transforming Photonics)。
频率梳正在彻底改变光学,从电信到天体物理学,但它们的复杂性一直是一个障碍。(Frequency combs are revolutionizing optics, from telecommunications to astrophysics, but their complexity has been a roadblock.)
钽酸锂(lithium tantalate, LiTaO3)技术的最新进步改变了游戏规则,创造了一种紧凑,用户友好的梳状发生器(comb generator),具有令人难以置信的效率和带宽。这一突破可能重塑机器人和环境监测等领域,提供令人兴奋的新的可能性。
现代光学中的频率梳(Frequency Combs in Modern Optics)
在现代光学中,频率梳(frequency combs)是必不可少的工具,可以帮助以极高的精度测量光。它们使电信、环境监测和天体物理学等领域取得了重大进展。然而,到目前为止,制造紧凑高效的频率梳一直是一个挑战。
电光频率梳(Electro-optic frequency combs)于1993年首次推出,在使用级联相位调制(cascaded phase modulation)产生光学梳方面显示出巨大的潜力。尽管有这样的希望,但由于高功率要求和有限的带宽,他们的进展停滞不前。结果,研究领域转向飞秒激光器(femtosecond lasers)和克尔孤子微梳(Kerr soliton microcombs)。虽然这些技术是有效的,但它们具有复杂的调谐过程和高功率需求,使其无法广泛使用。.
薄膜电光集成光子电路的最新发展重新点燃了人们对电光频率梳(electro-optic frequency combs)的兴趣,特别是像铌酸锂(lithium niobate, LiNbO3)这样的材料。然而,在降低功耗的同时扩大带宽仍然是一个主要障碍。此外,铌酸锂固有的双折射特性(其分裂光束的倾向)从根本上限制了可实现的带宽,限制了进一步的进展。
钽酸锂技术的突破(A Breakthrough with Lithium Tantalate Technology)
瑞士洛桑联邦理工学院(EPFL)、美国科罗拉多矿业学院(Colorado School of Mines, Golden, CO, USA)和中国科学院上海微系统与信息技术研究所(Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China)的科学家们,现在已经通过在新开发的钽酸锂(LiTaO3)平台上结合微波和光学电路设计来解决这个问题,与铌酸锂(LiNbO3)相比,钽酸锂(LiTaO3)的固有双折射降低了17倍。在Tobias J. Kippenberg教授的带领下,研究人员开发了一种电光频率梳状发生器,通过2000多个梳状线实现了前所未有的450纳米光谱覆盖。与以前的设计相比,这一突破扩大了设备的带宽,并将微波功率要求降低了近20倍。该团队引入了一种集成的三重共振结构( “integrated triply resonant” architecture),其中3个相互作用的场——两个光学场和一个微波场——和谐地共振。这是通过一种新型的协同设计系统实现的,该系统集成了单片微波电路和光子元件。通过在钽酸锂光子集成电路上嵌入分布式共面波导谐振器,该团队显著提高了微波约束和能量效率。相关研究结果于2025年1月22日已经在《自然》(Nature)杂志网站在线发表——Junyin Zhang, Chengli Wang, Connor Denney, Johann Riemensberger, Grigory Lihachev, Jianqi Hu, Wil Kao, Terence Blésin, Nikolai Kuznetsov, Zihan Li, Mikhail Churaev, Xin Ou, Gabriel Santamaria-Botello, Tobias J. Kippenberg. Ultrabroadband integrated electro-optic frequency comb in lithium tantalate. Nature, 2025. DOI: 10.1038/s41586-024-08354-4. Published 22 January 2025. https://www.nature.com/articles/s41586-024-08354-4
紧凑的设计和提高效率(Compact Design and Enhanced Efficiency)
由于钽酸锂具有较低的双折射特性,该器件的体积小巧,面积仅为1×1 cm2。这最大限度地减少了光波之间的干扰,从而使平滑和一致的频率梳产生。此外,该装置使用一个简单的、自由运行的分布式反馈激光二极管,使其比Kerr孤子对应物(Kerr soliton counterparts)更加用户友好。
新型梳状发生器的超宽带跨度为450 nm,超越了目前电光频率梳技术的极限。它在90%的自由光谱范围内稳定运行,消除了复杂调谐机制的需要。这种稳定性和简单性为实际的、可现场部署的应用打开了大门。
未来对光子学及其他领域的影响(Future Implications for Photonics and Beyond)
这种新设备可能是光子学领域的一个范式转变。凭借其坚固的设计和紧凑的占用面积,它可以影响机器人等领域,其中精确的激光测距以及环境监测中的精确的气体传感都是至关重要的。此外,这种协同设计方法的成功突出了下一代器件集成微波和光子工程的未开发潜力。
所有样品均在EPFL微纳米技术中心(CMi)和物理研究所(IPHYS)的洁净室中制备。LTOI晶圆是在上海新硅集成技术有限公司(Shanghai Novel Si Integration Technology简称NSIT)和中国科学院上海微系统和信息技术研究所(Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences简称SIMIT-CAS)制造的。
这项工作得到了瑞士国家科学基金会{Swiss National Science Foundation grant no. 211728 (Bridge Discovery) and 216493 (HEROIC)}的支持。
上述介绍仅供参考,欲了解更多信息敬请注意浏览原文和相关报道。
High-Performance Frequency Comb with Unprecedented Spectral Coverage
The integrated frequency comb generator based on Kerr parametric oscillation1 has led to chip-scale, gigahertz-spaced combs with new applications spanning hyperscale telecommunications, low-noise microwave synthesis, light detection and ranging, and astrophysical spectrometer calibration2,3,4,5,6. Recent progress in lithium niobate (LiNbO3) photonic integrated circuits (PICs) has resulted in chip-scale, electro-optic (EO) frequency combs7,8, offering precise comb-line positioning and simple operation without relying on the formation of dissipative Kerr solitons. However, current integrated EO combs face limited spectral coverage due to the large microwave power required to drive the non-resonant capacitive electrodes and the strong intrinsic birefringence of LiNbO3. Here we overcome both challenges with an integrated triply resonant architecture, combining monolithic microwave integrated circuits with PICs based on the recently emerged thin-film lithium tantalate (LiTaO3)9. With resonantly enhanced EO interaction and reduced birefringence in LiTaO3, we achieve a fourfold comb span extension and a 16-fold power reduction compared to the conventional, non-resonant microwave design. Driven by a hybrid integrated laser diode, the comb spans over 450 nm (more than 60 THz) with more than 2,000 lines, and the generator fits within a compact 1-cm2 footprint. We additionally observe that the strong EO coupling leads to an increased comb existence range approaching the full free spectral range of the optical microresonator. The ultra-broadband comb generator, combined with detuning-agnostic operation, could advance chip-scale spectrometry and ultra-low-noise millimetre wave synthesis10,11,12,13 and unlock octave-spanning EO combs. The methodology of co-designing microwave and photonics can be extended to a wide range of integrated EOs applications14,15,16.
转载本文请联系原作者获取授权,同时请注明本文来自诸平科学网博客。
链接地址:https://wap.sciencenet.cn/blog-212210-1470684.html?mobile=1
收藏