杨正瓴
[请教] 我们的结果应该投哪个期刊?
2013-3-4 21:48
阅读:6127
标签:function, Fisher, Quadratic, transformation, Sigmoid-like

[请教] 我们的结果应该投哪个期刊?

         

       我们近年一共发现了3比当前国内外《数理统计学》教材中普遍使用的“Fisher z 变换”更好的初等显式函数
(1)第一个形式特别简单,已经被《Transactions of Tianjin University》录用。这是EI核心期刊。
        该函数的最大误差是“Fisher z 变换”的70.7%,累计误差为“Fisher z 变换”的141%
        该 Quadratic Radical Function 很简单,对改进某重要问题的计算机算法,有很好的作用。不排除将来进入《计算机算法设计与分析》之类书籍或教材的可能性。这个是不是有点阿Q
(2)第二个形式略微复杂,已经被《Communications in Statistics-Theory and Methods》录用。目前是4区的SCI期刊。
        该函数的最大误差是“Fisher z 变换”的21.4%,累计误差为“Fisher z 变换”的8.90%
        该 Sigmoid-like 函数首次胜过“Fisher z 变换”,不仅可以替换“Fisher z 变换”取得更好的精度,还对加深了解“Fisher z 变换”有重要的启发。

        现在是第三个初等显式函数要投稿,不知道投哪里?请您指教!谢谢!
      第三个函数的最大误差约是“Fisher z 变换”的18%,累计误差约为“Fisher z 变换”的4.7%
        第三个函数的形式比第二个“应该”简单些。
 
        除了我们的工作,Yun, Beong In 的 Approximation to the cumulative normal distribution using hyperbolic tangent
based functions, Journal of the Korean Mathematical Society, 2009, 46(6): 1267-1276. 是近期的他人工作,里面有近几十年有关工作的概述。这也是个4区的SCI期刊。
    
————————— 相关背景 —————————

Sir Ronald Aylmer Fisher

Photograph courtesy of Professor A W F Edwards by kind permission of Joan Fisher Box
http://www.galtoninstitute.org.uk/Newsletters/GINL0306/university_of_cambridge_eugenics.htm

  

  在《英百科全书Encyclopaedia Britannica
http://www.britannica.com/EBchecked/topic/208658/Sir-Ronald-Aylmer-Fisher

        Sir Ronald Aylmer Fisher, byname R.A. Fisher    (born February 17, 1890, London, England—died July 29, 1962, Adelaide, Australia), British statistician and geneticist who pioneered the application of statistical procedures to the design of scientific experiments.


在《The MacTutor History of Mathematics archive
http://www-history.mcs.st-andrews.ac.uk/Biographies/Fisher.html

 

Fisher z-transform 在《苏联数学百科全书》的当前网络版
词条“Correlation (in statistics)”
http://www.encyclopediaofmath.org/index.php/Correlation_(in_statistics) 

If   one usually uses the Fisher z-transform, with   replaced by z according to the formula

Even at relatively small values the distribution of is a good approximation to the normal distribution with mathematical expectation

and variance . On this basis one can now define approximate confidence intervals for the true correlation coefficient .

For the distribution of the sample correlation ratio and for tests of the linearity hypothesis for the regression, see [3].

References

[1]  H. Cramér, "Mathematical methods of statistics" , Princeton Univ. Press (1946)
[2]  B.L. van der Waerden, "Mathematische Statistik" , Springer (1957)
[3]  M.G. Kendall, A. Stuart, "The advanced theory of statistics" , 2. Inference and relationship , Griffin (1979)
[4]  S.A. Aivazyan, "Statistical research on dependence" , Moscow (1968) (In Russian)
    
  

相关链接:

转载本文请联系原作者获取授权,同时请注明本文来自杨正瓴科学网博客。

链接地址:https://wap.sciencenet.cn/blog-107667-667152.html?mobile=1

收藏

分享到:

当前推荐数:7
推荐到博客首页
网友评论9 条评论
确定删除指定的回复吗?
确定删除本博文吗?