[请教] 我们的结果应该投哪个期刊?
(1)第一个形式特别简单,已经被《Transactions of Tianjin University》录用。这是EI核心期刊。
该函数的最大误差是“Fisher z 变换”的70.7%,累计误差为“Fisher z 变换”的141%。
该函数的最大误差是“Fisher z 变换”的21.4%,累计误差为“Fisher z 变换”的8.90%。
现在是第三个初等显式函数要投稿,不知道投哪里?请您指教!谢谢!
第三个函数的最大误差约是“Fisher z 变换”的18%,累计误差约为“Fisher z 变换”的4.7%。
第三个函数的形式比第二个“应该”简单些。
除了我们的工作,Yun, Beong In 的 Approximation to the cumulative normal distribution using hyperbolic tangent based functions, Journal of the Korean Mathematical Society, 2009, 46(6): 1267-1276. 是近期的他人工作,里面有近几十年有关工作的概述。这也是个4区的SCI期刊。
Sir Ronald Aylmer Fisher
Photograph courtesy of Professor A W F Edwards by kind permission of Joan Fisher Box
http://www.galtoninstitute.org.uk/Newsletters/GINL0306/university_of_cambridge_eugenics.htm
在《大英百科全书,Encyclopaedia Britannica》
http://www.britannica.com/EBchecked/topic/208658/Sir-Ronald-Aylmer-Fisher
Sir Ronald Aylmer Fisher, byname R.A. Fisher (born February 17, 1890, London, England—died July 29, 1962, Adelaide, Australia), British statistician and geneticist who pioneered the application of statistical procedures to the design of scientific experiments.
在《The MacTutor History of Mathematics archive》
http://www-history.mcs.st-andrews.ac.uk/Biographies/Fisher.html
Fisher z-transform 在《苏联数学百科全书》的当前网络版
词条“Correlation (in statistics)”
http://www.encyclopediaofmath.org/index.php/Correlation_(in_statistics)
If one usually uses the Fisher z-transform, with replaced by z according to the formula
Even at relatively small values the distribution of is a good approximation to the normal distribution with mathematical expectation
and variance . On this basis one can now define approximate confidence intervals for the true correlation coefficient .
For the distribution of the sample correlation ratio and for tests of the linearity hypothesis for the regression, see [3].
[1] | H. Cramér, "Mathematical methods of statistics" , Princeton Univ. Press (1946) |
[2] | B.L. van der Waerden, "Mathematische Statistik" , Springer (1957) |
[3] | M.G. Kendall, A. Stuart, "The advanced theory of statistics" , 2. Inference and relationship , Griffin (1979) |
[4] | S.A. Aivazyan, "Statistical research on dependence" , Moscow (1968) (In Russian) |
http://bbs.sciencenet.cn/home.php?mod=space&uid=107667&do=blog&id=603297
http://blog.sciencenet.cn/home.php?mod=space&uid=107667&do=blog&id=657534
转载本文请联系原作者获取授权,同时请注明本文来自杨正瓴科学网博客。
链接地址:https://wap.sciencenet.cn/blog-107667-667152.html?mobile=1
收藏