[打听,资料] 2nm节点光刻J,还使用“浸入式光刻技术 immersion lithography technology”吗?
浸入式光刻技术: immersion lithography technology
鳍式场效应晶体管: fin field-effect transistor, FinFET
摩尔定律: Moore's law
核心:
集成电路芯片,FinFET、浸入式光刻技术已经接近发展极限了吗?
“半电路、半电磁场”集成电路,该正式登场了吗?
摩尔定律(Moore’s Law)要靠“半电路、半电磁场”集成电路来维持了?
图1 摩尔定律,及其相关的具体技术
https://zhuanlan.zhihu.com/p/701242607
知乎,2024-06-02,《芯片简史》读书笔记(一)半导体基础
图2 这是一台打开的高数值孔径NA极紫外(High NA EUV)光刻J吗?ASML.original.jpg
https://media.datacenterdynamics.com/media/images/ASML.original.jpg
为了判断“半电路、半电磁场”集成电路在未来的命运,只好硬着头皮去查找各种相关的新技术。
印象 ASML 是通过“悲壮”的“浸入式光刻技术 immersion lithography technology”成就自己的世界地位的。
当前与今后,“浸入式光刻技术 immersion lithography technology”还继续使用吗?
一、阅读笔记
1.1 2024-01-13,ASML交付2nm制程光刻J,这颗工业皇冠上的明珠,中国何时摘走?
https://zhuanlan.zhihu.com/p/677576070
2nm来了,终结FinFET
一直以来,包括7nm、5nm在内的芯片制程都采用的是FinFET晶体管技术。
ASML交付了史上第一台2nm制程光刻J,这项“耗时10年的开创性科学和系统工程确实值得鞠一躬”。与上一代光刻J相比,新的光刻J把数值孔径(Numerical Aperture,简称NA,越大,代表着光刻J具备更高的分辨能力。)从0.33增加到0.55,使其拥有更强的聚光和分辨能力,能够处理更加精细的尺寸。
除此之外,芯片到了2nm大小,电子通过芯片中的绝缘层时,会发生隧穿效应。这是一种重要的量子力学现象,用好了可以让电子通过量子隧道效应穿越绝缘层并实现电子在芯片中的高速传输,大大提升性能。用不好就是严重的漏电现象,不仅良品率极低,芯片也无法正常使用。为何一直被荷兰ASML垄断,技术难度堪比登天。
https://zhuanlan.zhihu.com/p/677576070
1.2 2022-12-21,未来光刻J的发展方向
https://www.zgbk.com/ecph/words?SiteID=1&ID=487942&Type=bkdzb&SubID=743
随着光刻分辨力的提升,加工线宽越来越细,现在的电子芯片工艺越来越精密,从14纳米到7纳米,再到5纳米,现在已经在研发3纳米技术;但电子芯片终究有其极限,1纳米就将成为电子芯片的“极限”。当低于1纳米时,芯片内部结构的间隔尺寸几乎接近原子的距离,硅本身的物理形态将变得很不稳定,电流很容易将薄氧层击穿,造成两极短路或者造成晶体管的金属薄膜针被电流熔断,导致两极开路。
一旦达到极限尺寸,传统电子芯片的发展也将出现停滞,因为这一问题是没有办法利用现有技术手段进行改进的,只能寻找新的替代方法。
在未来,光子芯片最可能“接班”电子芯片。现在的智能手机中的芯片基本上都是电子芯片。光子芯片则是通过硅和硅基底让光子代替电子作为传输媒介。光子的粒子更小、运动速度更快、能耗更低、抗干扰性更强,光子芯片完美地融合了光的速度和带宽,产品性能将得到10倍以上的提升,能耗却只有传统电子芯片的1%。
https://www.zgbk.com/ecph/words?SiteID=1&ID=487942&Type=bkdzb&SubID=743
1.3 ASML
https://www.asml.com/en/news/stories/2024/5-things-high-na-euv
The impact of High NA EUV lithography
Chip innovation is increasingly important in today’s digital world. Consumers expect new types and generations of electronic devices that are smaller but do more, and do it better and faster. With High NA EUV lithography, chipmakers can deliver on those consumer demands.
The first chips made using the EXE:5000 will be 2 nm node Logic chips. Memory chips at a similar transistor density will follow. These chips will combine the tiniest features with leading-edge architectures to power the technology of the future: robotics, artificial intelligence, the internet of things, and beyond.
To learn more about our EUV lithography systems, how EUV works and the road to EUV, check out our EUV lithography systems page.
【机器翻译】高NA EUV光刻的影响
芯片创新在当今的数字世界中越来越重要。消费者期望新型和新一代的电子设备更小,但功能更多,做得更好更快。通过高NA EUV光刻技术,芯片制造商可以满足这些消费者的需求。
使用EXE:5000制造的第一批芯片将是2nm节点逻辑芯片。类似晶体管密度的存储芯片也将随之而来。这些芯片将把最微小的功能与前沿架构相结合,为未来的技术提供动力:机器人、人工智能、物联网等等。
如需深入了解我们的EUV光刻系统、EUV的工作原理以及通往EUV的道路,请查看我们的EUV曝光系统页面。
https://www.asml.com/en/news/stories/2024/5-things-high-na-euv
History
Over 40 years of ingenuity and perseverance
https://www.asml.com/en/company/about-asml/history
2000s
During the 2000s we drastically improved our systems' resolution, with immersion technology, and productivity, with our revolutionary dual-stage TWINSCAN technology.
The 2000s: TWINSCAN and immersion technology pave the way
In 2001, we introduced the TWINSCAN system and its revolutionary dual-stage technology. These systems expose one wafer while the next wafer is being measured and aligned, which maximizes the productivity and accuracy of the system, boosting ownership value for our customers. In the same year, we completed the acquisition of the Silicon Valley Group to further strengthen ASML’s capabilities in semiconductor technological advancement. The TWINSCAN AT:1150i debuted as the first immersion machine in 2003, followed by the TWINSCAN XT:1250i, XT:1400i, and in 2006 the first volume production machine for immersion, the XT:1700i. In 2007, we shipped the TWINSCAN XT:1900i immersion system with a numerical aperture of 1.35 – the highest in the industry. With this new technology, we enabled our customers to produce even smaller chip features by projecting light through a layer of water between the lens and the wafer.
【机器翻译】2000年代
在2000年代,我们通过浸没技术大幅提高了系统的分辨率,并通过革命性的双级TWINSCAN技术提高了生产率。
2000年代:TWINSCAN和沉浸式技术铺平了道路
2001年,我们推出了TWINSCAN系统及其革命性的双级技术。这些系统在测量和校准下一个晶圆的同时暴露一个晶圆,从而最大限度地提高了系统的生产率和精度,提高了客户的所有权价值。同年,我们完成了对硅谷集团的收购,以进一步加强ASML在半导体技术进步方面的能力。TWINSCAN AT:1150i于2003年首次亮相,是第一台浸入式机器,随后是TWINSCAN XT:1250i、XT:1400i,2006年是第一台批量生产的浸入式机器XT:1700i。2007年,我们推出了TWINSCAN XT:1900i浸没系统,其数值孔径为1.35,为业内最高。通过这项新技术,我们使客户能够通过透镜和晶片之间的一层水投射光线来生产更小的芯片功能。
https://www.asml.com/en/company/about-asml/history
二、集成电路的主角:过去 10多年,是FinFET晶体管、浸入式光刻吗?
2.1 FinFET(鳍式场效应晶体管 fin field effect transistor)
https://blog.sciencenet.cn/blog-107667-1402038.html
2.2 浸入式光刻技术/immersion lithography technology
https://www.zgbk.com/ecph/words?SiteID=1&ID=124492&Type=bkzyb&SubID=99057
https://blog.sciencenet.cn/blog-107667-1299147.html
三、未来:新的计算原理、新的硬件技术
3.1 新的硬件技术:“半电路、半电磁场”电路?
2023-08-21,[征求意见稿] “半电路、半电磁场”电路:目标和现状
https://blog.sciencenet.cn/blog-107667-1399839.html
3.2 新的计算原理:“自然运算”?
2024-01-05,[笔记,请教,原创] “自然运算”信息设备的一般理论模式
https://blog.sciencenet.cn/blog-107667-1416810.html
参考资料:
[1] 2023-08-31,浸入式光刻技术/immersion lithography technology/谢常青,中国大百科全书,第三版网络版[DB/OL]
https://www.zgbk.com/ecph/words?SiteID=1&ID=124492&Type=bkzyb&SubID=99057
[2] 2024-12-14,极紫外光刻技术/extreme ultraviolet lithography technology/谢常青,中国大百科全书,第三版网络版[DB/OL]
https://www.zgbk.com/ecph/words?SiteID=1&ID=124510&Type=bkzyb&SubID=99057
[3] 2024-12-14,光刻技术/photolithography technology/王希平撰,韩伟华修订,中国大百科全书,第三版网络版[DB/OL]
https://www.zgbk.com/ecph/words?SiteID=1&ID=62902&Type=bkzyb&SubID=80594
[4] 2022-12-21,未来光刻J的发展方向,唐燕、胡松、何渝,中国大百科全书,第三版网络版[DB/OL]
https://www.zgbk.com/ecph/words?SiteID=1&ID=487942&Type=bkdzb&SubID=743
[5] ASML, 2024-01-25, 5 things you should know about High NA EUV lithography
https://www.asml.com/en/news/stories/2024/5-things-high-na-euv
The impact of High NA EUV lithography
Chip innovation is increasingly important in today’s digital world. Consumers expect new types and generations of electronic devices that are smaller but do more, and do it better and faster. With High NA EUV lithography, chipmakers can deliver on those consumer demands.
The first chips made using the EXE:5000 will be 2 nm node Logic chips. Memory chips at a similar transistor density will follow. These chips will combine the tiniest features with leading-edge architectures to power the technology of the future: robotics, artificial intelligence, the internet of things, and beyond.
To learn more about our EUV lithography systems, how EUV works and the road to EUV, check out our EUV lithography systems page.
[6] ASML, History, Over 40 years of ingenuity and perseverance
https://www.asml.com/en/company/about-asml/history
[7] 知乎,2024-01-13,ASML交付2nm制程光刻J,这颗工业皇冠上的明珠,中国何时摘走?
https://zhuanlan.zhihu.com/p/677576070
相关链接:
[1] 2025-01-18,[预先判断,prejudgment] “半电路、半电磁场”电路的前景
https://blog.sciencenet.cn/blog-107667-1469400.html
[2] 2025-01-04,[请教,讨论] 延续摩尔定律:以“功能部件”为设计单元? (关联:“半电路、半电磁场”集成电路)
https://blog.sciencenet.cn/blog-107667-1467381.html
[3] 2025-01-08,[优先权,笔记,展望] 新型数字JK触发器:“半电路、半电磁场”集成电路、“光”“电”共生集成芯片的关键判断
https://blog.sciencenet.cn/blog-107667-1467963.html
[4] 2025-01-05,[优先权,笔记] 以“功能部件”为设计单元:以JK触发器为例的思考 (关联:延续“摩尔定律 Moore's law”)
https://blog.sciencenet.cn/blog-107667-1467522.html
[5] 2023-08-21,[征求意见稿] “半电路、半电磁场”电路:目标和现状
https://blog.sciencenet.cn/blog-107667-1399839.html
[6] 2021-08-10,[求证] ASML 腾飞的技术原因是什么?【immersion system】
https://blog.sciencenet.cn/blog-107667-1299147.html
感谢您的指教!
感谢您指正以上任何错误!
感谢您提供更多的相关资料!
转载本文请联系原作者获取授权,同时请注明本文来自杨正瓴科学网博客。
链接地址:https://wap.sciencenet.cn/blog-107667-1470704.html?mobile=1
收藏