杨正瓴
[打听] 傻会像诺伊斯 Noyce、霍尔尼 Hoerni 一样捡漏吗? (资料阅读:真空电子管)
2025-1-9 22:55
阅读:888

壮志未酬身将死?长使咱家泪满澿。

                                       

汉语是联合国官方正式使用的 种同等有效语言之一。请不要歧视汉语!

Chinese is one of the six equally effective official languages of the United Nations.

Not to discriminate against Chinese, please!

                                 

[打听] 傻会像诺伊斯 Noyce、霍尔尼 Hoerni 一样捡漏吗? (资料阅读:真空电子管) 

                       

霍尔尼: Jean Améd́ée Hoerni, 1924-09-26 ~ 1997-01-12, 73

诺伊斯: Robert Norton Noyce, 1927-12-12 ~ 1990-06-03, 62

摩尔定律: Moore's law

集成电路: integrated circuit

集成光路: optical integrated circuits

真空电子器件: vacuum electronic device

肖克莱: William Bradford Shockley, 1910-02-13 ~ 1989-08-12, 79

德福雷斯特: Lee de Forest, 1873-08-26 ~ 1961-06-30, 87

               

Jean Hoerni   NV_0222_Steber_Figure07.jpg

图1  霍尔尼 Jean Améd́ée Hoerni, 1924-09-26 ~ 1997-01-12, 73

https://www.nutsvolts.com/uploads/wygwam/NV_0222_Steber_Figure07.jpg

https://www.nutsvolts.com/magazine/article/the-birth-of-the-integrated-circuit

   Jean Hoerni was a Swiss-American engineer who pioneered the silicon transistor. He was one of the eight founders of Fairchild. He is credited with developing the planar process — an important technology for integrated circuits.

   Jean Hoerni是一位瑞士裔美国工程师,是硅晶体管的先驱。他是Fairchild的八位创始人之一。他被认为开发了平面工艺,这是集成电路的一项重要技术。

                   

     

一、笔记:相关的资料

https://www.eetasia.com/the-roots-of-silicon-valley-part-2-planar-technology-the-fairchildren/

   Planar technology, announced in January 1959, would become the second most important invention in the history of microelectronics — after the invention of the transistor — laying the foundation for future integrated circuits. At the time, the advance went virtually unnoticed, with the key exception of Noyce, who recognized that a glass layer was an insulator, providing a means for connecting wires laid on top and patterned like a printed-circuit board.

   【机器翻译】1959年1月宣布的平面技术将成为微电子史上第二重要的发明,仅次于晶体管的发明,为未来的集成电路奠定了基础。当时,这一进步几乎没有被注意到,但诺伊斯除外,他认识到玻璃层是一种绝缘体,为连接铺设在顶部并像印刷电路板一样图案化的电线提供了一种方法。

https://www.eetasia.com/the-roots-of-silicon-valley-part-2-planar-technology-the-fairchildren/

                   

https://ieeexplore.ieee.org/document/4390023

   With a doctorate in crystal physics, Hoerni realized that the impurity atoms coming through the tiny openings in the oxide layer would diffuse sideways nearly as well as downward into silicon’s crystal structure. Which meant that the junction interfaces would curl up under the oxide layer surrounding an opening, just micrometers farther out from its edges. If left in place instead of being etched away, he figured, the oxide layer could protect those junctions.

   But the device Hoerni envisioned would not only be more difficult to fabricate, its structure flew in the face of conventional wisdom. Especially at Bell Labs and Western Electric, the oxide layer was considered "dirty"—filled with impurities after the diffusion process—and thus had to be removed.

   【机器翻译】拥有晶体物理学博士学位的 Hoerni 意识到,通过氧化物层中的微小开口进入的杂质原子会向侧面扩散,几乎向下扩散到硅的晶体结构中。这意味着结界面将在开口周围的氧化物层下卷曲,离开口边缘只有几微米远。他认为,如果留在原地而不是被蚀刻掉,氧化物层可以保护这些

   但 Hoerni 设想的装置不仅更难制造,其结构也与传统智慧背道而驰。特别是在贝尔实验室和西部电气公司,氧化物层被认为是“脏的”——在扩散过程后充满了杂质——因此必须去除。

https://ieeexplore.ieee.org/document/4390023

                   

https://www.nutsvolts.com/magazine/article/the-birth-of-the-integrated-circuit

   At this time, the Air Force was placing its hopes on molecular engineering concepts — building up a structure atom by atom that would provide a useable electronic function. Noyce believed that the molecular concept was wrong for the time “because the real strength of the electronics industry has been to synthesize something out of very simple elements rather than trying to invent a complex element. The real key to progress was to see if you couldn’t devise the various elements you would need to build a circuit and then put these together.” This idea coincided with industry chitchat to the effect that it would be nice to be able to make the whole thing in one piece instead of having to fabricate it out of a lot of different pieces.

   【机器翻译】当时,空军将希望寄托在分子工程概念上——一个原子接一个原子地构建一个结构,以提供可用的电子功能。诺伊斯认为,分子概念在当时是错误的,“因为电子行业的真正优势在于用非常简单元素合成东西,而不是试图发明一种复杂元素。进步的真正关键是看看你是否不能设计出构建电路所需的各种元素,然后将它们组合在一起。”这一想法与行业闲聊相吻合,大意是能够将整个东西制成一件,而不是用很多不同的部件制造出来,这将是一件好事。

https://www.nutsvolts.com/magazine/article/the-birth-of-the-integrated-circuit

                   

https://ieeexplore.ieee.org/document/4025617

   To the dismay of Gordon and others in his division, Morton squelched efforts at Bell Labs to pursue what the semiconductor industry began calling large-scale integration, or LSI, which yielded single silicon chips containing more than 1000 components. He even derided people working on LSI as “large-scale idiots,” said one colleague. 

   【机器翻译】令Gordon和他所在部门的其他人沮丧的是,Morton压制了贝尔实验室追求半导体行业开始称之为大规模集成(LSI)的努力,该集成生产了包含1000多个组件的单晶硅芯片。一位同事说,他甚至嘲笑从事LSI工作的人是“大规模的白痴”。

https://ieeexplore.ieee.org/document/4025617

                

二、俺不会捡漏吧?

   只能像肖克莱一样研制“坚持管”。

                  

          

参考资料:

[1] EE Times, 2022-01-07, The Roots of Silicon Valley, Part 2: Planar Technology, The Fairchildren

https://www.eetasia.com/the-roots-of-silicon-valley-part-2-planar-technology-the-fairchildren/

[2] Micharl Riordan. The Silicon Dioxide Solution, How physicist Jean Hoerni built the bridge from the transistor to the integrated circuit [J]. IEEE Spectrum, 2007, 44(12): 51-56.

doi:  10.1109/MSPEC.2007.4390023

https://ieeexplore.ieee.org/document/4390023

[3] Michael Riordan. How Bell Labs Missed the Microchip, The man who pioneered the transistor never appreciated its full [J]. IEEE Spectrum, 2007, 44(12): 51-56.

doi:  10.1109/MSPEC.2006.253406

https://ieeexplore.ieee.org/document/4025617

[4] 美国国家工程院. Greatest Engineering Achievements of the Twentieth Century [EB/OL]. 

http://www.greatachievements.org/

[5] Electronics Timeline, the 20th century's greatest engineering achievements

http://www.greatachievements.org/?id=3956

[6] TIMELINE, Computer History Museum

https://www.computerhistory.org/siliconengine/timeline/

[7] 2024-12-05,真空电子器件/vacuum electronic device/吴鸿适,张晋林

https://www.zgbk.com/ecph/words?SiteID=1&ID=350520&Type=bkzyb&SubID=80700

   借助电子在真空或气体中与电磁场发生相互作用,将一种形式电磁能量转换为另一种形式电磁能量的器件。

   静电控制电子管

   微波电子管

   新型微波及毫米波器件

   电子束器件

   光电器件

   真空指示管

   充气管

   X射线管

   真空量子电子器件

   真空微电子器件

[8] 2024-12-05,真空电子器件工艺/technique for vacuum electronic device/刘联宝

https://www.zgbk.com/ecph/words?SiteID=1&ID=365978&Type=bkzyb&SubID=80719

   为了保证真空电子器件的寿命长和可靠性高,器件内部真空度应优于10-5帕。

[9] 2024-12-05,真空电子器件介质材料/dielectric material for vacuum electronic device/高陇桥

https://www.zgbk.com/ecph/words?SiteID=1&ID=365934&Type=bkzyb&SubID=80718

   在真空电子器件中主要用作管壳、输能窗、支撑件、绝缘子和显示屏等的高电阻率无机固体绝缘材料。

   玻璃、陶瓷和晶体是真空电子器件中用得较多的介质材料。

[10] 2023-05-17,电子管/electron tube/陈佳圭

https://www.zgbk.com/ecph/words?SiteID=1&ID=94582&Type=bkzyb&SubID=80693

   1915年,英国人H.J.朗德在三极管的控制栅极与阳极之间又加了一个电极,称为帘栅极,其作用是解决三极管中流向阳极的电子流有一部分会流到控制栅极的问题。1927年,德国人在阳极与帘栅极之间又加了一个电极,发明了五极管。新加的电极称为抑制栅。加入这个电极的原因是:在四极管中电子流撞到阳极上时阳极会产生二次电子发射,抑制栅就是为抑制这种二次电子发射而设置的。

[11] 2022-12-23,微波电子管/microwave electronic tube/丁耀根https://www.zgbk.com/ecph/words?SiteID=1&ID=125362&Type=bkzyb&SubID=80700

[12] 2022-12-23,微波真空电子器件/microwave vacuum electronic device/丁耀根

https://www.zgbk.com/ecph/words?SiteID=1&ID=125363&Type=bkzyb&SubID=80721

   利用真空中自由电子与微波电磁场相互作用产生和放大微波信号的真空电子器件。

   微波频率范围为100兆赫~300吉赫。毫米波频带(30~300吉赫)是微波频带的一部分。

   微波真空电子器件分为两大类,即静电控制器件和动态控制器件。

[13] 2022-12-23,收信管/receiving tube/李德杰

https://www.zgbk.com/ecph/words?SiteID=1&ID=124734&Type=bkzyb&SubID=80728

   在各种小功率电子装置中用来对电信号进行放大、检波、变频、整流或产生小功率电振荡的真空电子器件。

   21世纪后,中国真空收信管仍有小批量产品,主要用于高品质音响等领域。

[14] 2022-12-23,发射管/transmitting tube/李德杰

https://www.zgbk.com/ecph/words?SiteID=1&ID=124733&Type=bkzyb&SubID=80728

   产生或放大高频功率的静电控制电子管。

   20世纪80年代初,优良的电视发射管可在1000兆赫下工作,输出功率达20千瓦,效率为40%。

   大中功率金属陶瓷封接的发射四极管也逐步被宽带隙半导体器件取代。功率10千瓦以上的大功率广播发射四极管在短期内还难以被广泛替换。

[15] 2022-12-23,大功率电子管/high-frequency electron tube/吕征宇

https://www.zgbk.com/ecph/words?SiteID=1&ID=394501&Type=bkzyb&SubID=139973

   工作时,阳极加正向电压。当阴极被加热(直热式,预热时间约1分钟),产生的热电子可被阳极收集,形成阳极电流,改变栅极电位可以控制阳极电流的大小。

[16] 2023-08-19,带电粒子与电磁场的相互作用/interaction between charged particle and electromagnetic field/罗积润

https://www.zgbk.com/ecph/words?SiteID=1&ID=125096&Type=bkzyb&SubID=80710

[17] 2022-01-20,甚长波传输系统/very long wave transmission system/宋志群

https://www.zgbk.com/ecph/words?SiteID=1&ID=110338&Type=bkzyb&SubID=99598

   甚长波(very long wave,VLW)波长为10~100千米,频率为3~30千赫,又称为甚低频(very low frequency,VLF)。甚长波一般在地面和电离层下界形成的球形波导内传播,距离可达数千千米乃至覆盖全球,波导传播中也存在多模干涉现象,虽带来幅度、相位等波动,但这一频段的电磁波传播比较稳定,受电离层干扰和高空核爆炸的影响较小,通信可靠。

[18] 2023-07-20,太赫兹测量仪器/terahertz measurement instrument/姜万顺

https://www.zgbk.com/ecph/words?SiteID=1&ID=420952&Type=bkzyb&SubID=205700

   介于毫米波与红外光之间相当宽范围的电磁波谱区域,是电子学与光学的交界处,无线电物理领域称其为亚毫米波(submillimeter wave; SMMW),而光学领域则习惯称之为远红外辐射(far infrared; FIR)。

   太赫兹信号发生器按产生机理不同,可分为基于光子学和基于电子学太赫兹信号发生器两类。

   光整流产生太赫兹波的方法是利用电光晶体中的光整流效应,光整流效应是一种二阶非线性效应,可以看作是Pockels效应的逆过程。当飞秒激光照射电光晶体时产生瞬间极化强度P(t),太赫兹辐射的强度正比于极化强度P(t)的二阶时间导数。相对于光电导天线产生太赫兹辐射,光整流方法可以产生更短的电脉冲,因此,用光整流方法产生的太赫兹辐射具有更宽的频谱宽度,可高达50THz。

[19] 2023-08-18,天线/antenna/任朗,茅于宽,谢处方

https://www.zgbk.com/ecph/words?SiteID=1&ID=103794&Type=bkzyb&SubID=80497

   因此,天线可以说是导波和空间波的变换装置。

   一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。在某些场合,同一天线还可兼作发射和接收天线,如脉冲雷达天线就是如此。同一天线作为发射或接收的基本特性参数是相同的。这就是天线的互易定理。

     

相关链接:

[1] 2023-08-29,[小资料] 1959年霍尔尼(Jean Amedee Hoerni)的平面工艺专利(图片)

https://blog.sciencenet.cn/blog-107667-1400737.html

[2] 2023-11-15,[悲恸,绝望,崩溃] 创新,有时会气死人吗?(霍尔尼 Hoerni 的平面工艺 planar)

https://blog.sciencenet.cn/blog-107667-1409771.html

[3] 2023-09-08,[小资料] 1966年 ~ 1998年“电子学 Electronics”重要事件

https://blog.sciencenet.cn/blog-107667-1401935.html

          

感谢您的指教!

感谢您指正以上任何错误!

感谢您提供更多的相关资料!

转载本文请联系原作者获取授权,同时请注明本文来自杨正瓴科学网博客。

链接地址:https://wap.sciencenet.cn/blog-107667-1468122.html?mobile=1

收藏

分享到:

当前推荐数:23
推荐到博客首页
网友评论6 条评论
确定删除指定的回复吗?
确定删除本博文吗?