[打听,资料] “光电效应 photoelectric effect”的响应速度
光电效应: photoelectric effect
光子吸收: photon absorption
发射光电子: photoelectron appearance
延迟: delay
发射延迟: emission delay
一、打听:“光电效应 photoelectric effec”的响应速度
https://www.zgbk.com/ecph/words?SiteID=1&ID=151344&Type=bkzyb&SubID=95660
光开始照射与光电子射出之间的时间间隔非常短,在早期的实验观察中,根据当时的时间测量精度推断,这个时间的滞后不大于10-9秒。
https://www.zgbk.com/ecph/words?SiteID=1&ID=151344&Type=bkzyb&SubID=95660
https://www.nature.com/articles/s41586-018-0503-6#Sec1
图1 原文 Fig. 1: The atomic chronoscope method.
a, Surface experiment. An XUV (blue) light pulse launches photoelectrons (black arrows) from a W(110) surface (grey) and from an iodine chronoscope (purple) on top. An NIR (red) laser pulse encodes the appearance time of photoelectrons above the crystal as a momentum shift, which is resolved using an electron spectrometer. b, Gas-phase gauge experiment. The delay between photon absorption by the chronoscope and photoelectron appearance is determined by comparing to helium (yellow). c, Full timing sequence. Absolute delays are depicted in red, surface-experiment delays in blue and gauge-measurement delays in grey.
【机器翻译】图1:原子计时法。
a、 表面实验。XUV(蓝色)光脉冲从W(110)表面(灰色)和顶部的碘计时器(紫色)发射光电子(黑色箭头)。NIR(红色)激光脉冲将光电子在晶体上方的出现时间编码为动量偏移,使用电子光谱仪解析。b、 气相规实验。通过与氦(黄色)进行比较,确定了计时器吸收光子和光电子出现之间的延迟。c、 完整的时序。绝对延迟用红色表示,表面实验延迟用蓝色表示,量规测量延迟用灰色表示。
https://www.nature.com/articles/s41586-018-0503-6/figures/1
图2 原文 Fig. 2: Absolute timing of W(110) photoemission at 105 eV photon energy.
a, Representative I/W(110) streaking spectrogram. Delays are encoded as phase shifts of the kinetic-energy oscillations. b, XUV-only photoemission spectra for I/W(110) and pristine W(110). c, Iodine-coverage-dependent photoemission timing. Shown are W4f exit delay averages at coinciding iodine coverage (blue circles), the extrapolation to the pristine surface (blue line), I/W(110) valence-electron delays (green squares), the pristine W(110) conduction-band timing (green diamond), the I4d reference (purple) and transport simulation results (stars, W4f (blue), WCB with (yellow) and without (green) surface state influence). Errors represent 95% confidence intervals. Vertical error bars are calculated assuming a Student’s t-distribution.
【机器翻译】图2:105 eV光子能量下W(110)光电子发射的绝对时间。
a、 代表性I/W(110)条纹光谱图。延迟被编码为动能振荡的相移。b、 仅XUV光电发射光谱用于I/W(110)和原始W(110)。c、 碘覆盖依赖光电发射定时。所示为重合碘覆盖下的W4f出口延迟平均值(蓝色圆圈)、原始表面外推(蓝色线条)、I/W(110)价电子延迟(绿色方块)、原始W(110”导带定时(绿色菱形)、I4d参考(紫色)和输运模拟结果(恒星、W4f(蓝色)、具有(黄色)和没有(绿色)表面状态影响的WCB)。误差代表95%的置信区间。垂直误差条是在假设学生t分布的情况下计算的。
https://www.nature.com/articles/s41586-018-0503-6/figures/2
图3 原文 Fig. 3: Timing of adsorbate photoemission.
a, Energy-resolved emission delay of W4f core and I/W(110) valence-band (VB) photoelectrons for different iodine coverages. Core-level emission timing (blue lines) is unaffected by the iodine coverage (cov.) within the 95% confidence interval (shaded areas). The emission delay of valence states is substantially reduced, and its dispersion increases by adsorbing iodine (grey, purple and green lines). b, Photoelectron spectra of an iodine-saturated (green) and a clean (grey) W(110) surface. Iodine mainly contributes to the lower-kinetic-energy part of the valence-electron emission, visible in the spectra and in the energy-resolved photoemission delays.
【机器翻译】图3:吸附物光电发射的时间。
a、 不同碘覆盖率下W4f核和I/W(110)价带(VB)光电子的能量分辨发射延迟。在95%的置信区间内(阴影区域),核心级发射时间(蓝线)不受碘覆盖率(冠状病毒)的影响。价态的发射延迟大大降低,其分散性通过吸附碘而增加(灰色、紫色和绿色线条)。b、 碘饱和(绿色)和清洁(灰色)W(110)表面的光电子能谱。碘主要贡献于价电子发射的较低动能部分,这在光谱和能量分辨光电发射延迟中可见。
https://www.nature.com/articles/s41586-018-0503-6/figures/3
https://www.nature.com/articles/s41586-018-0503-6#Sec1
二、用途:单向光速的测量
“斐索齿轮”(等效物)后面的光强检测。
参考资料:
[1] 2022-01-20,光电效应/photoelectric effect/徐湛,中国大百科全书,第三版网络版[DB/OL]
https://www.zgbk.com/ecph/words?SiteID=1&ID=151344&Type=bkzyb&SubID=95660
光开始照射与光电子射出之间的时间间隔非常短,在早期的实验观察中,根据当时的时间测量精度推断,这个时间的滞后不大于10-9秒。
[2] M. Ossiander, J. Riemensberger, S. Neppl, M. Mittermair, M. Schäffer, A. Duensing, M. S. Wagner, R. Heider, M. Wurzer, M. Gerl, M. Schnitzenbaumer, J. V. Barth, F. Libisch, C. Lemell, J. Burgdörfer, P. Feulner, R. Kienberger. Absolute timing of the photoelectric effect [J]. Nature, 2018, 561(7723): 374-377
doi: 10.1038/s41586-018-0503-6
https://www.nature.com/articles/s41586-018-0503-6#Sec1
[3] 杨正瓴,2024-09-27 21:28,斐索齿轮法与脉冲光:单向光速测量的可能性,科学智慧火花,中国科学院
https://idea.cas.cn/zhhh/sxwlhxytw/wlx/info/2024/551076.html
相关链接:
[1] 2024-12-07,[打听] “泡克耳斯效应 Pockels effect”及其响应时间
https://blog.sciencenet.cn/blog-107667-1463366.html
[2] 2024-08-07,[请教,讨论] 电磁学的实验再检验(18):“真空中单向光速”的直接测量(一)
https://blog.sciencenet.cn/blog-107667-1445525.html
[3] 2024-08-08,[请教,讨论] 双齿轮:“真空中单向光速”的直接测量(二)
https://blog.sciencenet.cn/blog-107667-1445670.html
[4] 2024-08-05,[请教,讨论] 电磁学的实验再检验(17):“真空中单向光速不变”可以直接测量吗?
https://blog.sciencenet.cn/blog-107667-1445222.html
[5] 2024-03-13,[请教] 光速测量:当前最精确、最权威的方法是哪几个?最常用方法有哪些?
https://blog.sciencenet.cn/blog-107667-1425220.html
[6] 2024-03-11,[请教] “狭义相对性原理”、“光速不变原理”的最权威、最主流表述
https://blog.sciencenet.cn/blog-107667-1424918.html
感谢您的指教!
感谢您指正以上任何错误!
感谢您提供更多的相关资料!
转载本文请联系原作者获取授权,同时请注明本文来自杨正瓴科学网博客。
链接地址:https://wap.sciencenet.cn/blog-107667-1463602.html?mobile=1
收藏