[笔记,趣闻,科普] 三维(3D)电子技术,晶体管
三维(3D)电子技术: three-dimensional electronics
玻尔兹曼暴政: Boltzmann tyranny
垂直纳米线: vertical-nanowire
异质结: heterojunction
隧道晶体管: tunnelling transistors
2023-08-16,Nature 提倡像“盖大楼”一样去研发新的晶体管。
果然,2024 年 Nature Electronics 就推出来几种“大楼”式样的新型晶体管。
其中, MIT 的博士后邵彦杰(Yanjie Shao)盖的纳米楼最漂亮!他们使用锑化镓和砷化铟,设计了隧穿场效应晶体管。
“邵彦杰制造了直径仅为6纳米的纳米线异质结构,采用只有几纳米宽的垂直纳米线(堪比DNA链的宽度),可以提供与最先进的硅晶体管相当的性能,同时在比传统硅器件低得多的电压下高效运行。极小的尺寸将使更多此类晶体管能够封装到芯片上,从而满足电子设备快速、强大且更节能的需求。”
https://www.kepuchina.cn/article/articleinfo?business_type=100&classify=0&ar_id=552720
外行,看不懂。不知道下面的【机器翻译】是否正确?
https://www.nature.com/articles/s41928-024-01310-0
Numerous developments in three-dimensional electronics have emerged in 2024, creating new opportunities for conventional and emerging electronic systems.
Back in June, we selected three-dimensional (3D) electronics as our technology of the year for 2024. Building vertically — be it by stacking silicon chips with advanced packaging technologies or using two-dimensional (2D) semiconductors to achieve monolithic 3D integration — is a technique that can increase device density and create novel computational systems. And it is a key approach for both the immediate development of computer chips and the longer-term development of emerging electronic devices.
【机器翻译】2024年,三维电子技术出现了许多发展,为传统和新兴电子系统创造了新的机遇。
早在6月,我们就选择了三维(3D)电子技术作为2024年的年度技术。垂直构建——无论是通过堆叠具有先进封装技术的硅芯片,还是使用二维(2D)半导体来实现单片3D集成——都是一种可以提高器件密度并创建新型计算系统的技术。这是计算机芯片近期发展和新兴电子设备长期发展的关键途径。
https://www.nature.com/articles/s41928-024-01310-0
以下是三种新型的晶体管。
一、三维集成金属氧化物晶体管
图1 原文 Fig. 1: 3D monolithic integration of In2O3 TFTs.
https://www.nature.com/articles/s41928-024-01205-0/figures/1
https://www.nature.com/articles/s41928-024-01205-0
a–c, Two-dimensional and 3D schematic representations of BG (a), TG (b) and DG (c) transistors. d, 3D schematic representation of 10-S DG transistors on an Si/SiO2 substrate.
【机器翻译】a–c,BG(a)、TG(b)和DG(c)晶体管的二维和三维示意图。d、 Si/SiO2 基板上10-S DG晶体管的3D示意图。
thin-film transistor (TFT) : 薄膜晶体管
bottom-gate (BG) and top-gate (TG) : 底栅(BG)和顶栅(TG)
dual-gate (DG) transistors (Fig. 1c) : 双栅极(DG)晶体管(图1c)
二、垂直生长的金属纳米片与原子层沉积电介质集成,用于具有亚纳米电容等效厚度的晶体管
图2 原文 Fig. 4: MoS2 transistors with 2 nm HfO2/Pd based as top-gate dielectric and electrode.
https://www.nature.com/articles/s41928-024-01202-3/figures/4
https://www.nature.com/articles/s41928-024-01202-3
a, Schematic diagram of top-gate MoS2 transistors using 2 nm HfO2 (sub-1 nm CET) and 2D Pd as top-gate dielectric and electrode. b, The dual-sweep transfer curves measured under different Vds from 0.1 to 1.0 V. c, Corresponding output curves under different gate bias (Vgs = 1 to −1 V). d,e, The benchmark of the normalized gate hysteresis13,15,18,26,27,49,50,51,52 (d, Norm. ΔVH) and leakage current13,15,18,19,21,26,29,49,50,51 (e) as a function of CET value for the ALD-Pd gated MoS2 FETs compared to state-of-the-art representative 2D FETs.
【机器翻译】a、 使用2nm HfO2(亚1nm CET)和2D Pd作为顶栅电介质和电极的顶栅MoS2晶体管的示意图。b、 在0.1至1.0 V的不同Vds下测量的双扫描传输曲线,c、 以及在不同栅极偏压(Vgs =1至-1 V)下的相应输出曲线。d、 e,与最先进的代表性2D FET相比,ALD-Pd 门控 MoS2 FET的归一化栅极滞后电阻13,15,18,26,27,49,50,51,52(d,范数ΔVH)和漏电流13,15,18,19,21,26,29,49,50,51 (e)的基准是CET值的函数。
capacitance-equivalent thickness (CET) : 电容等效厚度
atomic-layer deposition (ALD) : 原子层沉积
Pd, Palladium : 钯
三、博士后邵彦杰:具有极端量子限制的缩放垂直纳米线异质结隧穿晶体管
图4 原文 Fig. 1: Ultra-scaled vertical-nanowire device design.
https://www.nature.com/articles/s41928-024-01279-w/figures/1
https://www.nature.com/articles/s41928-024-01279-w
a,b, Heterostructures in the fabrication of a heterojunction Esaki diode (a) and a tunnelling transistor (b). c,d, False-coloured 30°-tilted SEM images of vertical nanowires in the Esaki diode (c) and the tunnelling transistor (d), which were fabricated by dry-etching and citric acid:H2O2 wet-etching with DInAs of around 6 and 8 nm at the tunnelling junction, respectively. e,f, Schematics of the finished device structures for the vertical-nanowire Esaki diode (e) and vertical-nanowire tunnelling transistor (f). Lg denotes the gate length, which is around 50 nm. W denotes tungsten, the gate metal. g,h, Schematic energy band diagrams for a vertical-nanowire diode and a vertical-nanowire transistor along the cut lines A–A' (e) and B–B' (f). Ec, Ev, Ef,S and Ef,D denote the lowest conduction sub-band, the highest valence sub-band, the source Fermi level and the drain Fermi level, respectively. Inset of h, Fermi–Dirac distribution for a finite temperature in the source. E and P denote the energy and occupation probability, respectively. Scale bars, 20 nm (c,d).
【机器翻译】a、 b、异质结Esaki二极管(a)和隧道晶体管(b)制造中的异质结构。c、 d,Esaki二极管(c)和隧道晶体管(d)中垂直纳米线的假色30°倾斜SEM图像,分别通过干法蚀刻和柠檬酸:H2O2 湿法蚀刻在隧道结处制备,DInAs约为6和8 nm。e、 f,垂直纳米线Esaki二极管(e)和垂直纳米线隧穿晶体管(f)的成品器件结构示意图。Lg表示栅极长度,约为50nm。W表示栅极金属钨。g、 h,沿切割线a-a’(e)和B-B’(f)的垂直纳米线二极管和垂直纳米线晶体管的能带示意图。Ec、Ev、Ef,S 和 Ef,D 分别表示最低导带、最高价带、源极费米能级和漏极费米能级。h插图,源中有限温度的费米-狄拉克分布。E和P分别表示能量和占用概率。比例尺,20 nm(c,d)。
参考资料:
[1] Wei Cao, Huiming Bu, Maud Vinet, Min Cao, Shinichi Takagi, Sungwoo Hwang, Tahir Ghani, Kaustav Banerjee. The future transistors [J]. Nature, 2023, 620(7974): 501–515. 16 August 2023
doi: 10.1038/s41586-023-06145-x
https://www.nature.com/articles/s41586-023-06145-x
[2] Editorial, Build it up again [J]. Nature Electronics, 2024, 7(11): 935.
https://www.nature.com/articles/s41928-024-01310-0
[3] Saravanan Yuvaraja, Hendrik Faber, Mritunjay Kumar, Na Xiao, Glen Isaac Maciel García, Xiao Tang, Thomas D. Anthopoulos, Xiaohang Li. Three-dimensional integrated metal-oxide transistors [J]. Nature Electronics, 2024, 7(9): 768-776
doi: 10.1038/s41928-024-01205-0
https://www.nature.com/articles/s41928-024-01205-0
[4] Lei Zhang, Zhaochao Liu, Wei Ai, Jiabiao Chen, Zunxian Lv, Bing Wang, Mingjian Yang, Feng Luo, Jinxiong Wu. Vertically grown metal nanosheets integrated with atomic-layer-deposited dielectrics for transistors with subnanometre capacitance-equivalent thicknesses [J]. Nature Electronics, 2024, 7(8): 662-670
doi: 10.1038/s41928-024-01202-3
https://www.nature.com/articles/s41928-024-01202-3
[5] 科普中国,2024-12-03,实现重要概念突破!MIT中国博后研制超高效3D晶体管
https://www.kepuchina.cn/article/articleinfo?business_type=100&classify=0&ar_id=552720
[6] Yanjie Shao, Marco Pala, Hao Tang, Baoming Wang, Ju Li, David Esseni, Jesús A. del Alamo. Scaled vertical-nanowire heterojunction tunnelling transistors with extreme quantum confinement [J]. Nature Electronics, 2024,
doi: 10.1038/s41928-024-01279-w
https://www.nature.com/articles/s41928-024-01279-w
相关链接:
[1] 2023-09-09 17:05,[小资料] FinFET(鳍式场效应晶体管 fin field effect transistor)
https://blog.sciencenet.cn/blog-107667-1402038.html
感谢您的指教!
感谢您指正以上任何错误!
感谢您提供更多的相关资料!
转载本文请联系原作者获取授权,同时请注明本文来自杨正瓴科学网博客。
链接地址:https://wap.sciencenet.cn/blog-107667-1463088.html?mobile=1
收藏