[ein Stein, 趣闻,科普] 单一形状的非周期平面密铺
英国约克郡: Yorkshire, England
滑铁卢大学: University of Waterloo
帽子: hat
乌龟: turtle
幽灵: Spectres
非周期性: aperiodic
瓷砖: tile
密铺,几何镶嵌: tiling
一、单一形状的非周期平面密铺:“幽灵 Spectres”
(1)2022-11,David Smith,英国约克郡的一位业余数学家、艺术家和密铺爱好者,退休印刷技术员(retired printing technician),找到了已知的第一种非周期性单瓷砖:“帽子 hat”。
13边形状的帽子(13-sided shape, craggy, hatlike shape)
图1 帽子 vocabulary.png
https://www.mckennagene.com/tshirt/more/vocabulary.png
https://www.mckennagene.com/tshirt/learningMore.html
(2)几天之后,David Smith 又发现了:“乌龟 turtle”。
图2 乌龟 turtle WithPersonality.png
https://www.mckennagene.com/tshirt/more/turtleWithPersonality.png
https://www.mckennagene.com/tshirt/learningMore.html
(3)2023-05-29 之前,David Smith, Joseph Samuel Myers, Craig S. Kaplan, Chaim Goodman-Strauss 找到了“幽灵 Spectres”。
单一形状的非周期密铺完成。
图3 幽灵 spectre turtle2Spectre.png
https://www.mckennagene.com/tshirt/more/turtle2Spectre.png
https://www.mckennagene.com/tshirt/learningMore.html
图4 Figure 1.1: The 14-sided polygon Tile(1, 1), shown on the left, is a weakly chiral aperiodic monotile: if by fiat we forbid tilings that mix unreflected and reflected tiles, then it admits only non-periodic tilings. By modifying its edges, as shown in the centre and right for example, we obtain strictly chiral aperiodic monotiles called “Spectres” that admit only non-periodic tilings even when reflections are permitted.
https://escholarship.org/uc/item/4xn41982
(4)“幽灵 Spectres”平面密铺
图5 “幽灵 Spectres”平面密铺
Jen Christiansen A Chiral Aperiodic Monotile David Smith_裁剪_稀疏.jpg
裁剪自:
(5)帽子-乌龟 动图
图6 帽子-乌龟 动图
https://cs.uwaterloo.ca/~csk/hat/examples/animation.gif
https://cs.uwaterloo.ca/~csk/hat/
二、主要发现者
图7 David Smith’s discovery has been called “mind-boggling.”
https://www.quantamagazine.org/wp-content/uploads/2023/04/Dave-Smith-courtesyofDaveSmith.webp
https://www.quantamagazine.org/hobbyist-finds-maths-elusive-einstein-tile-20230404/
图8 Craig Kaplan criag.jpg
三、相关报道
https://www.mckennagene.com/tshirt/learningMore.html
And with the discovery of the spectre shape, the race for a true einstein was complete. This single shape is a "chiral aperiodic monotile", meaning it can tile an infinite plane, without repeating and it is truly just one shape, reflection not required.
【机器翻译】随着幽灵形状的发现,真正的爱因斯坦的竞赛已经完成。这个单一的形状是一个“手性非周期性单调”,这意味着它可以平铺一个无限的平面,而不需要重复,它真的只是一个形状,不需要反射。
https://www.mckennagene.com/tshirt/learningMore.html
2022年11月, David Smith 找到了它. 这就是“帽子”, 已知的第一种非周期性单瓷砖.
Smith 一位业余数学家、艺术家和密铺爱好者, 他像许多数学发现那样,通过探索和观察,发现了“帽子”. 之后, Smith 与研究人员 Craig Kaplan、Chaim Goodman-Strauss 和 Joseph Samuel Myers 联系, 他们共同验证并确认了这是长久以来寻找的非周期性单瓷砖.
https://www.sciencenews.org/article/mathematicians-discovered-einstein-tile
Although the name “einstein” conjures up the iconic physicist, it comes from the German ein Stein, meaning “one stone,” referring to the single tile. The einstein sits in a weird purgatory between order and disorder. Though the tiles fit neatly together and can cover an infinite plane, they are aperiodic, meaning they can’t form a pattern that repeats.
【机器翻译】虽然“爱因斯坦”这个名字让人联想到这位标志性的物理学家,但它来自德语ein Stein,意思是“一块石头”,指的是一块瓷砖。爱因斯坦坐在秩序和混乱之间的一个奇怪的炼狱里。尽管瓷砖整齐地组合在一起,可以覆盖无限的平面,但它们是非周期性的,这意味着它们不能形成重复的图案。
https://www.sciencenews.org/article/mathematicians-discovered-einstein-tile
参考资料:
[1] 中国科学院物理所,2024-09-27,探索密铺的奥秘:从平移对称到非周期单元
[2] David Smith, Joseph Samuel Myers, Craig S. Kaplan, Chaim Goodman-Strauss. A chiral aperiodic monotile [J]. Combinatorial Theory, 2024, 4(2):
https://escholarship.org/uc/item/4xn41982
https://arxiv.org/abs/2305.17743
[3] Science News, 2023-03-24, Mathematicians have finally discovered an elusive ‘einstein’ tile
https://www.sciencenews.org/article/mathematicians-discovered-einstein-tile
[4] Erica Klarreich, 2023-04-04, Hobbyist Finds Math’s Elusive ‘Einstein’ Tile
https://www.quantamagazine.org/hobbyist-finds-maths-elusive-einstein-tile-20230404/
[5] The University of Waterloo, 2023-07-05, The vampire einstein: Researchers discover a single shape that tiles the plane aperiodically without reflection
https://cs.uwaterloo.ca/news/vampire-einstein-aperiodic-monotile-without-reflection
动图 hat-tiling-animation.gif
https://cs.uwaterloo.ca/sites/default/files/uploads/images/hat-tiling-animation.gif
https://cs.uwaterloo.ca/~csk/hat/examples/animation.gif
[6] 知乎,2023-10-23,花费数学家400多年时间的非周期密铺问题
https://www.zhihu.com/zvideo/1699801100004417536?utm_psn=1845834964324712448
相关链接:
[1] 2024-11-29,[小资料,科普] 地球的运动速度 (自转,太阳,银心,本星系群,穿越星际空间)
https://blog.sciencenet.cn/blog-107667-1462314.html
[2] 2024-05-06,[不是科幻,倡议,讨论] 蓝色地球行动 Blue Earth Actions
https://blog.sciencenet.cn/blog-107667-1432938.html
[3] 2024-08-05,[请教,讨论] 电磁学的实验再检验(17):“真空中单向光速不变”可以直接测量吗?
https://blog.sciencenet.cn/blog-107667-1445222.html
[4] 2024-10-18,[电磁,单向,光速] 感谢《科学智慧火花》给贴出:“斐索齿轮法与脉冲光:单向光速测量的可能性”
https://blog.sciencenet.cn/blog-107667-1455972.html
[5] 2024-11-28,[打听,科普,资料] 牛顿为什么独身(单身,不结婚)?
https://blog.sciencenet.cn/blog-107667-1462138.html
[6] 2024-11-12,[趣闻] 如何获得诺贝尔奖 How to win numerous Nobel prizes
https://blog.sciencenet.cn/blog-107667-1459754.html
[7] 2024-10-31,[科普,小资料] 黏菌(多头绒泡菌)优化设计交通网
https://blog.sciencenet.cn/blog-107667-1457951.html
[8] 2023-12-17,[小资料,趣闻] 贝克莱 George Berkeley 的“科研成果”
https://blog.sciencenet.cn/blog-107667-1414252.html
[9] 2023-01-16,[搞笑?搞哭?汇集] 怎样判断“原创”和“诺贝尔奖成果”?
https://blog.sciencenet.cn/blog-107667-1372203.html
[10] 2020-12-11,冰的铺砌(2020秋,北洋园):卡片机傻拍2020(88)
https://blog.sciencenet.cn/blog-107667-1262294.html
感谢您的指教!
感谢您指正以上任何错误!
感谢您提供更多的相关资料!
转载本文请联系原作者获取授权,同时请注明本文来自杨正瓴科学网博客。
链接地址:https://wap.sciencenet.cn/blog-107667-1462408.html?mobile=1
收藏