||
[笔记,数学文化] “千禧年大奖难题”,“发现全新的研究方向或领域”,后者更难能可贵
克雷数学研究所: Clay Mathematics Institute
千禧年大奖难题: The Millennium Prize Problems
Birch-Swinnerton-Dyer 猜想: Birch and Swinnerton-Dyer Conjecture
Hodge 猜想: Hodge Conjecture
Navier-Stokes 方程解的存在性与光滑性: Navier-Stokes Equation
P/NP 问题,P对NP: P vs NP
庞加莱猜想: Poincaré Conjecture,Solved 已解决
黎曼假设: Riemann Hypothesis
Yang-Mills 规范场存在性与质量间隙: Yang-Mills & The Mass Gap
一、[笔记] 发现全新的研究方向或领域:难能可贵
第 68 页:
需要特别强调的是,这是七个(当时)未解决的重要问题,但并非“最”重要。无论是揭开古老的未解之谜,还是发现全新的研究方向或领域,都无比艰难。由前者所取得的成果较易为当世之人(尤其是数学家们)所敬仰,而后者的成就往往需要经过更多的时间积淀才能被世人所理解和接受,两者都难能可贵。
第 67 页:
另一个重要的议题是:这些问题该以什么形式提出?比如,庞加莱猜想可被推广为瑟斯顿(Thurston)几何化猜想,而黎曼假设与朗兰兹纲领有关。委员会作出决定:难题都9尽可能地以最简单明了的形式呈现。
https://www.global-sci.org/intro/article_detail/mc/18380.html
综上,傻以为:
“千禧年大奖难题”,“发现全新的研究方向或领域”,后者更难能可贵,更艰难。
二、[感慨] 朗兰兹纲领没有直接入选
“而黎曼假设与朗兰兹纲领有关。”黎曼假设进入“大奖难题”,而“朗兰兹纲领(Langlands program)”落选了。
因此,朗兰兹老师,获奖可能性大大降低了。
图1 朗兰兹 Robert Phelan Langlands, 1936-10-06 ~
三、网址
(1)Birch and Swinnerton-Dyer Conjecture
https://www.claymath.org/millennium/birch-and-swinnerton-dyer-conjecture/
(Andrew Wiles)
(2) Hodge Conjecture
https://www.claymath.org/millennium/hodge-conjecture/
(Pierre Deligne)
(3) Navier-Stokes Equation
https://www.claymath.org/millennium/navier-stokes-equation/
(Charles Fefferman)
(4) P vs NP
https://www.claymath.org/millennium/p-vs-np/
(Stephen Cook)
(5)Poincaré Conjecture
https://www.claymath.org/millennium/poincare-conjecture/
Solved
(John Milnor)
(6) Riemann Hypothesis
https://www.claymath.org/millennium/riemann-hypothesis/
(Enrico Bombieri)
(7)Yang-Mills & The Mass Gap
https://www.claymath.org/millennium/yang-mills-the-maths-gap/
(Arthur Jaffe 和Edward Witten)
参考资料:
[1] Arthur Jaffe, 薛博卿译. 千禧年大奖难题之始与未终[J]. 数学文化, 2020, 11(4): 65-74.
https://www.global-sci.org/intro/article_detail/mc/18380.html
https://www.global-sci.org/intro/articles_list/mc/2043.html
[2] The Millennium Prize Problems, Clay Mathematics Institute
https://www.claymath.org/millennium-problems/
[3] 2022-12-23,朗兰兹,R. /Langlands,Robert/胡作玄,中国大百科全书,第三版网络版[DB/OL]
https://www.zgbk.com/ecph/words?SiteID=1&ID=419008&Type=bkzyb&SubID=61734
[4] Robert Phelan Langlands, MacTutor History of Mathematics Archive
https://mathshistory.st-andrews.ac.uk/Biographies/Langlands/
[5-1] 中国科学院,孙斌勇, 《紫光阁》杂志:朗兰兹纲领:一项伟大的数学工程
https://www.cas.cn/cm/201603/t20160321_4550124.shtml
[5-2] 中国科学院数学与系统科学研究院,孙斌勇, 《紫光阁》杂志:朗兰兹纲领:一项伟大的数学工程
http://amss.cas.cn/xwdt/zhxw/2016/201603/t20160321_4568187.html
[6-1] 中国科学院,2020-08-21,【中国科学报】朗兰兹纲领:一项伟大的数学工程
https://www.cas.cn/cm/202008/t20200821_4756602.shtml?from=singlemessage
[6-2] 韩扬眉. 朗兰兹纲领:一项伟大的数学工程[N]. 中国科学报, 2020-08-21 第1版 要闻.
https://news.sciencenet.cn/dz/dzzz_1.aspx?dzsbqkid=34916
https://news.sciencenet.cn/dz/dzzz_1.aspx?dzsbqkid=34916
https://bbs.sciencenet.cn/plus.php?mod=iframelogin
[7] Hilbert problems. Encyclopedia of Mathematics.
https://encyclopediaofmath.org/wiki/Hilbert_problems
Hilbert's ninth problem.
Proof of the most general law of reciprocity in any number field
Solved by E. Artin (1927; see Reciprocity laws). See also Class field theory, which also is relevant for the 12th problem. The analogous question for function fields was settled by I.R. Shafarevich (the Shafarevich reciprocity law, 1948); see [a46]. All this concerns Abelian field extensions. The matter of reciprocity laws and symbols for non-Abelian field extensions more properly fits into non-Abelian class field theory and the Langlands program, see also below.
Hilbert's twelfth problem.
Extension of the Kronecker theorem on Abelian fields to any algebraic realm of rationality.
For Abelian extensions of number fields (more generally, global fields and also local fields) this is (more or less) the issue of class field theory. For non-Abelian extensions, i.e. non-Abelian class field theory and the much therewith intertwined Langlands program (Langlands correspondence, Langlands–Weil conjectures, Deligne–Langlands conjecture), see e.g. [a25], [a27]. See also [a21] for two complex variable functions for the explicit generation of class fields.
[8] Langlands Program | Institute for Advanced Study
https://www.ias.edu/idea-tags/langlands-program
[9] 2018: Robert P. Langlands, THE ABEL PRIZE
https://abelprize.no/abel-prize-laureates/2018
Institute for Advanced Study, Princeton, USA
“for his visionary program connecting representation theory to number theory.”
相关链接:
[1] 2019-08-10,[求证] 1967年朗兰兹 Robert Phelan Langlands 写给韦伊的信里说
https://blog.sciencenet.cn/blog-107667-1193149.html
[2] 2020-08-17,小忆“第2类数学(智能数学)”的提出
https://blog.sciencenet.cn/blog-107667-1246726.html
[3] 2021-11-09,[杂录] 对1999年《人类智能模拟的“第2类数学……》一文的一些扼要说明
https://blog.sciencenet.cn/blog-107667-1311664.html
[4] 2021-09-02,[打听] 佩雷尔曼 Perelman 的近年情况
https://blog.sciencenet.cn/blog-107667-1302558.html
[5] 2010-03-21,Grigori Perelman: Millennium Prize of Clay Mathematics Institute 与天才的心灵
https://blog.sciencenet.cn/blog-107667-304994.html
[6] 2022-07-07,[小资料] 真数学原创需要多长时间(怀尔斯、佩雷尔曼)
https://blog.sciencenet.cn/blog-107667-1346288.html
[7] 2023-04-16,[转载][资料,科普] 2005年 Science:全世界最前沿的125个科学问题
https://blog.sciencenet.cn/blog-107667-1384393.html
[8] 2021-05-15,《科学》杂志的两个 125个科学问题(2005,2021)
https://blog.sciencenet.cn/blog-107667-1286678.html
[9] 2018-11-03,[猜想] 素数分布,应该是个简单问题
https://blog.sciencenet.cn/blog-107667-1144328.html
[10] 2018-11-04,《[猜想] 素数分布,应该是个简单问题》的补充说明
https://blog.sciencenet.cn/blog-107667-1144462.html
[11] 2022-10-18,黎曼猜想,可能是这些诸多素数分布渐近公式里精度较好的一个
https://blog.sciencenet.cn/blog-107667-1359912.html
[12] 2022-07-28,往日(15):2009-11-13 对21世纪数学发展的看法
https://blog.sciencenet.cn/blog-107667-1349097.html
感谢您的指教!
感谢您指正以上任何错误!
感谢您提供更多的相关资料!
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-23 18:58
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社