
16 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, MONTH-MONTH 200X.

APPENDIX A
COMPLETE PSEUDOCODE
In this section we provide complete pseudocode for Steward. We then use this pseudocode in Appendix B to prove
the safety and liveness of our protocol.

Standard Abbreviations: lv = local view; gv = global view; u = update; seq = sequence number;
ctx = context; sig = signature; partial_sig = partial signature; t_sig = threshold signature

// Message from client
Update = (client_id, timestamp, client_update, sig)

// Messages used by THRESHOLD-SIGN
Partial_Sig = (server_id, data, partial_sig, verification_proof, sig)
Corrupted_Server = (server_id, data, Partial_sig, sig)

// Messages used by ASSIGN-SEQUENCE
Pre-Prepare = (server_id, gv, lv, seq, Update, sig)
Prepare = (server_id, gv, lv, seq, Digest(Update), sig)
Prepare_Certificate(gv, lv, seq, u) = a set containing a Pre-Prepare(server_id, gv, lv, seq, u, sig) message
and a list of 2f distinct Prepare(*, gv, lv, seq, Digest(u), sig) messages

// Messages used by ASSIGN-GLOBAL-ORDER
Proposal = (site_id, gv, lv, seq, Update, t_sig)
Accept = (site_id, gv, lv, seq, Digest(Update), t_sig)
Globally_Ordered_Update(gv, seq, u) = a set containing a Proposal(site_id, gv, lv, seq, u, t_sig) message and a
list of distinct Accept(*, seq, gv, *, Digest(u), t_sig) messages from a majority-1 of sites

// Messages used by LOCAL-VIEW-CHANGE
New_Rep = (server_id, suggested_lv, sig)
Local_Preinstall_Proof = a set of 2f+1 distinct New_Rep messages

// Messages used by GLOBAL-VIEW-CHANGE
Global_VC = (site_id, gv, t_sig)
Global_Preinstall_Proof = a set of distinct Global_VC messages from a majority of sites

// Messages used by CONSTRUCT-ARU, CONSTRUCT-LOCAL-CONSTRAINT, and CONSTRUCT-GLOBAL-CONSTRAINT
Request_Local_State = (server_id, gv, lv, seq)
Request_Global_State = (server_id, gv, lv, seq)
Local_Server_State = (server_id, gv, lv, invocation_aru, a set of Prepare Certificates, a set of Proposals,
sig)
Global_Server_State = (server_id, gv, lv, invocation_aru, a set of Prepare Certificates, a set of Proposals, a
set Globally_Ordered_Updates, sig)
Local_Collected_Server_State = (server_id, gv, lv, a set of 2f+1 Local_Server_State messages, sig)
Global_Collected_Server_State = (server_id, gv, lv, a set of 2f+1 Global_Server_State messages, sig)

//Messages used by GLOBAL-VIEW-CHANGE
Aru_Message = (site_id, gv, site_aru)
Global_Constraint = (site_id, gv, invocation_aru, a set of Proposals and/or Globally_Ordered_Updates with seq ≥
invocation_aru)
Collected_Global_Constraints(server_id, gv, lv, a set of majority Global_Constraint messages, sig)

//Messages used by GLOBAL-RECONCILIATION and LOCAL-RECONCILIATION
Global_Recon_Request = (server_id, global_session_seq, requested_aru, globally_ordered_update)
Local_Recon_Request = (server_id, local_session_seq, requested_aru)
Global_Recon = (site_id, server_id, global_session_seq, requested_aru)

Fig. A-1: Message types used in the global and local protocols.

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 17

int Server_id: unique id of this server within the site
int Site_id: unique id of this server’s site

A. Global Context (Global Protocol) Data Structure
int Global_seq: next global sequence number to assign.
int Global_view: current global view of this server, initialized to 0.
int Global_preinstalled_view: last global view this server preinstalled, initialized to 0.
bool Installed_global_view: If it is 0, then Global_view is the new view to be installed.
Global_VC Latest_Global_VC[]: latest Global_VC message received from each site.
struct globally_proposed_item {

Proposal_struct Proposal
Accept_struct_List Accept_List
Global_Ordered_Update_struct Globally_Ordered_Update

} Global_History[] // indexed by Global_seq
int Global_aru: global seq up to which this server has globally ordered all updates.
bool globally_constrained: set to true when constrained in global context.
int Last_Global_Session_Seq[]: latest session_seq from each server (local) or site (global)
int Last_Global_Requested_Aru[]: latest requested aru from each server (local) or site (global)
int Last_Global_Request_Time[]: time of last global reconciliation request from each local server
int Max_Global_Requested_Aru[]: maximum requested aru seen from each site

B. Local Context (Intra-site Protocols) Data Structure
int Local_view: local view number this server is in
int Local_preinstalled_vew: last local view this server preinstalled, initialized to 0.
bool Installed_local_view: If it is 0, then Global_view is the new one to be installed.
New_Rep Latest_New_Rep[]: latest New_Rep message received from each site.
struct pending_proposal_item {

Pre-Prepare_struct Pre-Prepare
Prepare_struct_List Prepare_List
Prepare_Cert_struct Prepare_Certificate
Proposal_struct Proposal

} Local_History[] //indexed by Global_seq
int Pending_proposal_aru: global seq up to which this server has constructed proposals
bool locally_constrained: set to true when constrained in the local context.
Partial_Sigs: associative container keyed by data. Each slot in the container holds an array, indexed by
server_id. To access data d from server s_id, we write Partial_Sigs{d}[s_id].
Update_Pool: pool of client updates, both unconstrained and constrained
int Last_Local_Session_Seq[]: latest session_seq from each local server
int Last_Local_Requested_Aru[]: latest requested aru from each local server
int Last_Local_Request_Time[]: time of last local reconciliation request from each local server

Fig. A-2: Global and Local data structures maintained by each server.

18 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, MONTH-MONTH 200X.

/* Notation: <== means append */
UPDATE-LOCAL-DATA-STRUCTURES:

case message:
A1. Pre-Prepare(server_id, *, lv, seq, u):
A2. if Local_History[seq].Pre-Prepare is empty
A3. Local_History[seq].Pre-Prepare ← Pre-Prepare
A4. else
A5. ignore Pre-Prepare

B1. Prepare(server_id, *, lv, seq, digest):
B2. if Local_History[seq].Pre-Prepare is empty
B3. ignore Prepare
B4. if Local_History[seq].Prepare_List contains a Prepare with server_id
B5. ignore Prepare
B6. Local_History[seq].Prepare_List <== Prepare
B7. if Prepare_Certificate_Ready(seq)
B8. pre-prepare ← Local_History[seq].Pre-Prepare
B9. PC ← Construct_Prepare_Certificate(pre-prepare, Local_History[seq].Prepare_List)
B10. Local_History[seq].Prepare_Certificate ← PC

C1. Partial_Sig(server_id, data, partial_sig, verification_proof, sig):
C2. if Local_History.Partial_Sigs{ data }[Server_id] is empty
C3. ignore Partial_Sig
C4. Local_History.Partial_Sigs{ data }[server_id] ← Partial_Sig

D1. Local_Collected_Server_State(gv, lv, Local_Server_State[]):
D2. union ← Compute_Local_Union(Local_Collected_Server_State)
D3. invocation_aru ← Extract_Invocation_Aru(Local_Server_State[])
D4. max_local_entry ← Extract_Max_Local_Entry(Local_History[])
D5. for each seq from (invocation_aru+1) to max_local_entry
D6. if Local_History[seq].Prepare_Certificate(*, lv’, seq, *) exists and lv’ < lv
D7. clear Local_History[seq].Prepare_Certificate
D8. if Local_History[seq].Proposal(*, lv’, seq, *) exists and lv’ < lv
D9. clear Local_History[seq].Proposal
D10. if Local_History[seq].Pre-Prepare(*, lv’, seq, *) exists and lv’ < lv
D11. clear Local_History[seq].Pre-Prepare
D12. for each Prepare_Certificate(*, *, seq, *), PC, in union
D13. if Local_History[seq].Prepare_Certificate is empty
D14. Local_History[seq].Prepare_Certificate ← PC
D15. for each Proposal(*, *, seq, *), P, in union
D16. if Local_History[seq].Proposal is empty
D17. Local_History[seq].Proposal ← P

E1. New_Rep(site_id,lv):
E2. if (lv > Latest_New_Rep[site_id])
E3. Latest_New_Rep[site_id] ← New_Rep
E4. Local_preinstalled_view ← Latest_New_Rep[Site_id]

F1. Update(u):
F2. SEND to all servers in site: Update(u)
F3. if representative of non-leader site
F4. SEND to representative of leader site: Update(u)
F5. Add Update(u) to Update_Pool

Fig. A-3: Rules for applying a message to the Local History data structure. The rules assume that there is no conflict, i.e.,
Conflict(message) == FALSE

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 19

/* Notation: <== means append */
UPDATE-GLOBAL-DATA-STRUCTURES:

case message:
A1. Proposal P(site_id, gv, *, seq, u):
A2. if Global_History[seq].Proposal is empty
A3. Global_History[seq].Proposal ← P
A4. if server in leader site
A5. Recompute Pending_proposal_aru
A6. if Global_History[seq].Prepare_Certificate is not empty
A7. remove Prepare_Certificate from Global_History[seq].Prepare_Certificate
A8. if Global_History[seq].Proposal contains Proposal(site_id’, gv’, *, seq, u’)
A9. if gv > gv’
A10. Global_History[seq].Proposal ← P
A11. if server in leader site
A12. Recompute Pending_proposal_aru
A13. if Global_History[seq].Prepare_Certificate is not empty
A14. remove Prepare_Certificate from Global_History[seq].Prepare_Certificate

B1. Accept A(site_id, gv, *, seq, digest):
B2. if Global_History[seq].Proposal is empty
B3. ignore A
B4. if Global_History[seq].Accept_List is empty
B5. Global_History[seq].Accept_List <== A
B6. if Global_History[seq].Accept_List has any Accept(site_id, gv’, *, seq, digest’)
B7. if gv > gv’
B8. discard all Accepts in Global_History[seq]
B9. Global_History[seq].Accept_List <== A
B10. if gv == gv’ and Global_History[seq] does not have Accept from site_id
B11. Global_History[seq].Accept_List <== A
B12. if gv < gv’
B13. ignore A
B14. if Globally_Ordered_Ready(seq)
B15. Construct globally_ordered_update from Proposal and list of Accepts
B16. Apply globally_ordered_update to Global_History

C1. Globally_Ordered_Update G(gv, seq, u):
C2. if not Globally_Ordered(seq) and Is_Contiguous(seq)
C3. Global_History[seq].Globally_Ordered_Update ← G
C4. Recompute Global_aru
C5. exec_set ← all unexecuted globally ordered updates with seq ≤ Global_aru
C6. execute the updates in exec_set
C7. if there exists at least one Globally_Ordered_Update(*, *, *) in exec_set
C8. RESET-GLOBAL-TIMER()
C9. RESET-LOCAL-TIMER()
C10. if server in leader site
C11. Recompute Pending_proposal_aru

D1. Collected_Global_Constraints(gv, Global_Constraint[]):
D2. union ← Compute_Constraint_Union(Collected_Global_Constraints)
D3. invocation_aru ← Extract_Invocation_Aru(Global_Constraint[])
D4. max_global_entry ← Extract_Max_Global_Entry(Global_History[])
D5. for each seq from (invocation_aru+1) to max_global_entry
D6. if Global_History[seq].Prepare_Certificate(gv’, *, seq, *) exists and gv’ < gv
D7. clear Global_History[seq].Prepare_Certificate
D8. if Global_History[seq].Proposal(gv’, *, seq, *) exists and gv’ < gv
D9. clear Global_History[seq].Proposal
D10. for each Globally_Ordered_Update(*, *, seq, *), G, in union
D11. Global_History[seq].Globally_Ordered_Update ← G
D12. for each Proposal(*, *, seq, *), P, in union
D13. if Global_History[seq].Proposal is empty
D14. Global_History[seq].Proposal ← P

E1. Global_VC(site_id, gv):
E2. if (gv > Latest_Global_VC[site_id].gv)
E3. Latest_Global_VC[site_id] ← Global_VC
E4. sorted_vc_messages ← sort Latest_Global_VC by gv
E5. Global_preinstalled_view ← sorted_vc_messages[�N/2� + 1].gv
E6. if (Global_preinstalled_view > Global_view)
E7. Global_view ← Global_preinstalled_view
E8. globally_constrained ← False

F1. Global_Preinstall_Proof(global_vc_messages[]):
F2. for each Global_VC(gv) in global_vc_messsages[]
F3. Apply Global_VC

Fig. A-4: Rules for applying a message to the Global History data structure. The rules assume that there is no conflict, i.e.,
Conflict(message) == FALSE

20 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, MONTH-MONTH 200X.

A1. boolean Globally_Ordered(seq):
A2. if Global_History[seq].Globally_Ordered_Update is not empty
A3. return TRUE
A4. return FALSE

B1. boolean Globally_Ordered_Ready(seq):
B2. if Global_History.Proposal[seq] contains a Proposal(site_id, gv, lv, seq, u)
B3. if Global_History[seq].Accept_List contains (majority-1) of distinct

Accept(site_id(i), gv, lv, seq, Digest(u)) with site_id(i) �= site_id
B4. return TRUE
B5. if Global_History[seq].Accept_List contains a majority of distinct
B6. Accept(site_id(i), gv’, lv, seq, Digest(u)) with gv >= gv’
B7. return TRUE
B8. return FALSE

C1. boolean Prepare_Certificate_Ready(seq):
C2. if Local_History.Proposal[seq] contains a Pre-Prepare(server_id, gv, lv, seq, u)
C3. if Local_History[seq].Prepare_List contains 2f distinct

Prepare(server_id(i), gv, lv, seq, d) with server_id �= server_id(i) and d == Digest(u)
C4. return TRUE
C5. return FALSE

D1. boolean In_Window(seq):
D2. if Global_aru < seq ≤ Global_aru + W
D3. return TRUE
D4. else
D5. return FALSE

E1. boolean Is_Contiguous(seq):
E2. for i from Global_aru+1 to seq-1
E3. if Global_History[seq].Prepare-Certificate == NULL and
E4. Global_History[seq].Proposal == NULL and
E5. Global_History[seq].Globally_Ordered_Update == NULL and
E6. Local_History[seq].Prepare-Certificate == NULL and
E7. Local_History[seq].Proposal == NULL
E8. return FALSE
E9. return TRUE

Fig. A-5: Predicate functions used by the global and local protocols to determine if and how a message should be applied to a
server’s data structures.

boolean Valid(message):
A1. if message has threshold RSA signature S
A2. if NOT VERIFY(S)
A3. return FALSE
A4. if message has RSA-signature S
A5. if NOT VERIFY(S)
A6. return FALSE
A7. if message contains update with client signature C
A8. if NOT VERIFY(C)
A9. return FALSE
A10. if message.sender is in Corrupted_Server_List
A11. return FALSE
A12. return TRUE

Fig. A-6: Validity checks run on each incoming message. Invalid messages are discarded.

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 21

boolean Conflict(message):
case message

A1. Proposal((site_id, gv, lv, seq, u):
A2. if gv �= Global_view
A3. return TRUE
A4. if server in leader site
A5. return TRUE
A6. if Global_History[seq].Global_Ordered_Update(gv’, seq, u’) exists
A7. if (u’ �= u) or (gv’ > gv)
A8. return TRUE
A9. if not Is_Contiguous(seq)
A10. return TRUE
A11. if not In_Window(seq)
A12. return TRUE
A13. return FALSE

B1. Accept(site_id, gv, lv, seq, digest):
B2. if gv �= Global_view
B3. return TRUE
B4. if (Global_History[seq].Proposal(*, *, *, seq, u’) exists) and (Digest(u’) �= digest)
B5. return TRUE
B6. if Global_History[seq].Global_Ordered_Update(gv’, seq, u’) exists
B7. if (Digest(u’) �= digest) or (gv’ > gv)
B8. return TRUE
B9. return FALSE

C1. Aru_Message(site_id, gv, site_aru):
C2. if gv �= Global_view
C3. return TRUE
C4. if server in leader site
C5. return TRUE
C6. return FALSE

D1. Request_Global_State(server_id, gv, lv, aru):
D2. if (gv �= Global_view) or (lv �= Local_view)
D3. return TRUE
D4. if server_id �= lv mod num_servers_in_site
D5. return TRUE
D6. return FALSE

E1. Global_Server_State(server_id, gv, lv, seq, state_set):
E2. if (gv �= Global_view) or (lv �= Local_view)
E3. return TRUE
E4. if not representative
E5. return TRUE
E6. if entries in state_set are not contiguous above seq
E7. return TRUE
E8. return FALSE

F1. Global_Collected_Servers_State(server_id, gv, lv, gss_set):
F2. if (gv �= Global_view) or (lv �= Local_view)
F3. return TRUE
F4. if each message in gss_set is not contiguous above invocation_seq
F5. return TRUE

G1. Global_Constraint(site_id, gv, seq, state_set):
G2. if gv �= Global_view
G3. return TRUE
G4. if server not in leader site
G5. return TRUE
G6. return FALSE

H1. Collected_Global_Constraints(server_id, gv, lv, gc_set):
H2. if gv �= Global_view
H3. return TRUE
H4. aru ← Extract_Aru(gc_set)
H5. if Global_aru < aru
H6. return TRUE
H7. return FALSE

Fig. A-7: Conflict checks run on incoming messages used in the global context. Messages that conflict with a server’s current
global state are discarded.

22 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, MONTH-MONTH 200X.

boolean Conflict(message):
case message

A1. Pre-Prepare(server_id, gv, lv, seq, u):
A2. if not (globally_constrained && locally_constrained)
A3. return TRUE
A4. if server_id �= lv mod num_servers_in_site
A5. return TRUE
A6. if (gv �= Global_view) or (lv �= Local_view)
A7. return TRUE
A8. if Local_History[seq].Pre-Prepare(server_id, gv, lv, seq, u’) exists and u’ �= u
A9. return TRUE
A10 if Local_History[seq].Prepare_Certificate.Pre-Prepare(gv, lv’, seq, u’) exists and u’ �= u
A11. return TRUE
A12. if Local_History[seq].Proposal(site_id, gv, lv’, u’) exists
A13. if (u’ �= u) or (lv’ > lv)
A14. return TRUE
A15. if Global_History[seq].Proposal(site_id, gv’, lv’, seq, u’) exists
A16. if (u’ �= u) or (gv’ > gv)
A17. return TRUE
A18. if Global_History[seq].Globally_Ordered_Update(*, seq, u’) exists
A19. if (u’ �= u)
A20. return TRUE
A21. if not Is_Contiguous(seq)
A22. return TRUE
A23. if not In_Window(seq)
A24. return TRUE
A25. if u is bound to seq’ in Local_History or Global_History
A26. return TRUE
A27. return FALSE

B1. Prepare(server_id, gv, lv, seq, digest):
B2. if not (globally_constrained && locally_constrained)
B3. return TRUE
B4. if (gv �= Global_view) or (lv �= Local_view)
B5. return TRUE
B6. if Local_History[seq].Pre-Prepare(server_id’, gv, lv, seq, u) exists
B7. if digest �= Digest(u)
B8. return TRUE
B9. if Local_History[seq].Prepare_Certificate.Pre-Prepare(gv, lv’, seq, u) exists
B10. if (digest �= Digest(u)) or (lv’ > lv)
B11. return TRUE
B12. if Local_History[seq].Proposal(gv, lv’, seq, u) exists
B13. if (digest �= Digest(u)) or (lv’ > lv)
B14. return TRUE
B15. return FALSE

C1. Request_Local_State(server_id, gv, lv, aru):
C2. if (gv �= Global_view) or (lv �= Local_view)
C3. return TRUE
C4. if server_id �= lv mod num_servers_in_site
C5. return TRUE
C6. return FALSE

D1. Local_Server_State(server_id, gv, lv, seq, state_set):
D2. if (gv �= Global_view) or (lv �= Local_view)
D3. return TRUE
D4. if not representative
D5. return TRUE
D6. if entries in state_set are not contiguous above seq
D7. return TRUE
D8. return FALSE

E1. Local_Collected_Servers_State(server_id, gv, lv, lss_set):
E2. if (gv �= Global_view) or (lv �= Local_view)
E3. return TRUE
E4. if each message in lss_set is not contiguous above invocation_seq
E5. return TRUE
E6. return FALSE

Fig. A-8: Conflict checks run on incoming messages used in the local context. Messages that conflict with a server’s current local
state are discarded.

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 23

THRESHOLD-SIGN(Data_s data, int server_id):
A1. Partial_Sig ← GENERATE_PARTIAL_SIG(data, server_id)
A2. SEND to all local servers: Partial_Sig

B1. Upon receiving a set, PSig_Set, of 2f+1 Partial_Sigs from distinct servers:
B2. signature ← COMBINE(PSig_Set)
B3. if VERIFY(signature)
B4. return signature
B5. else
B6. for each S in PSig_Set
B7. if NOT VERIFY(S)
B8. REMOVE(S, PSig_Set)
B9. ADD(S.server_id, Corrupted_Servers_List)
B9. Corrupted_Server ← CORRUPTED(S)
B10. SEND to all local servers: Corrupted_Server
B11. continue to wait for more Partial_Sig messages

Fig. A-9: THRESHOLD-SIGN Protocol, used to generate a threshold signature on a message. The message can then be used in
a global protocol.

ASSIGN-SEQUENCE(Update u):
A1. Upon invoking:
A2. SEND to all local servers: Pre-Prepare(gv, lv, Global_seq, u)
A3. Global_seq++

B1. Upon receiving Pre-Prepare(gv, lv, seq, u):
B2. Apply Pre-Prepare to Local_History
B3. SEND to all local servers: Prepare(gv, lv, seq, Digest(u))

C1. Upon receiving Prepare(gv, lv, seq, digest):
C2. Apply Prepare to Local_History
C3. if Prepare_Certificate_Ready(seq)
C4. prepare_certificate ← Local_History[seq].Prepare_Certificate
C5. pre-prepare ← prepare_certificate.Pre-Prepare
C6. unsigned_proposal ← ConstructProposal(pre-prepare)
C7. invoke THRESHOLD-SIGN(unsigned_proposal, Server_id) //returns signed_proposal

D1. Upon THRESHOLD-SIGN returning signed_proposal:
D2. Apply signed_proposal to Global_History
D3. Apply signed_proposal to Local_History
D4. return signed_proposal

Fig. A-10: ASSIGN-SEQUENCE Protocol, used to bind an update to a sequence number and produce a threshold-signed Proposal
message.

ASSIGN-GLOBAL-ORDER():
A1. Upon receiving or executing an update, or becoming globally or locally constrained:
A2. if representative of leader site
A3. if (globally_constrained and locally_constrained and In_Window(Global_seq))
A4. u ← Get_Next_To_Propose()
A5. if (u �= NULL)
A6. invoke ASSIGN-SEQUENCE(u) //returns Proposal

B1. Upon ASSIGN-SEQUENCE returning Proposal:
B2. SEND to all sites: Proposal

C1. Upon receiving Proposal(site_id, gv, lv, seq, u):
C2. Apply Proposal to Global_History
C3. if representative
C4. SEND to all local servers: Proposal
C5. unsigned_accept ← ConstructAccept(Proposal)
C6. invoke THRESHOLD-SIGN(unsigned_accept, Server_id) //returns signed_accept

D1. Upon THRESHOLD-SIGN returning signed_accept:
D2. Apply signed_accept to Global_History
D3. if representative
D4. SEND to all sites: signed_accept

E1. Upon receiving Accept(site_id, gv, lv, seq, Digest(u)):
E2. Apply Accept to Global_History
E3. if representative
E4. SEND to all local servers: Accept
E5. if Globally_Ordered_Ready(seq)
E6. globally_ordered_update ← ConstructOrderedUpdate(seq)
E7. Apply globally_ordered_update to Global_History

Fig. A-11: ASSIGN-GLOBAL-ORDER Protocol. The protocol runs among all sites and is similar to Paxos. It invokes the ASSIGN-
SEQUENCE and THRESHOLD-SIGN intra-site protocols to allow a site to emulate the behavior of a Paxos participant.

24 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, MONTH-MONTH 200X.

Get_Next_To_Propose():
A1. u ← NULL
A2. if(Global_History[Global_seq].Proposal is not empty)
A3. u ← Global_History[Global_seq].Proposal.Update
A4. else if(Local_History[Global_seq].Prepare_Certificate is not empty)
A5. u ← Local_History[Global_seq].Prepare_Certificate.Update
A6. else if(Unconstrained_Updates is not empty)
A7. u ← Unconstrained_Updates.Pop_Front()
A8. return u

Fig. A-12: Get Next To Propose Procedure. For a given sequence number, the procedure returns (1) the update currently bound
to that sequence number, (2) some update not currently bound to any sequence number, or (3) NULL if the server does not
have any unbound updates.

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 25

Initial State:
Local_view = 0
my_preinstall_proof = a priori proof that view 0 was preinstalled
RESET-LOCAL-TIMER()

LOCAL-VIEW-CHANGE()
A1. Upon Local_T expiration:
A2. Local_view++
A3. locally_constrained ← False
A4. unsigned_new_rep ← Construct_New_Rep(Local_view)
A5. invoke THRESHOLD-SIGN(unsigned_new_rep, Server_id) //returns New_Rep

B1. Upon THRESHOLD-SIGN returning New_Rep(lv):
B2. Apply New_Rep()
B3. SEND to all servers in site: New_Rep

C1. Upon receiving New_Rep(lv):
C2. Apply New_Rep()

D1. Upon increasing Local_preinstalled_view:
D2. RELIABLE-SEND-TO-ALL-SITES(New_Rep)
D3. SEND to all servers in site: New_Rep
D4. RESET-LOCAL-TIMER(); Start Local_T
D5. if representative of leader site
D6. invoke CONSTRUCT-LOCAL-CONSTRAINT(Pending_proposal_aru)
D7. if NOT globally_constrained
D8. invoke GLOBAL_VIEW_CHANGE
D9. else
D10. my_global_constraints ← Construct_Collected_Global_Constraints()
D11. SEND to all servers in site: My_global_constraints

Fig. A-13: LOCAL-VIEW-CHANGE Protocol, used to elect a new site representative when the current one is suspected to have
failed. The protocol also ensures that the servers in the leader site have enough knowledge of pending decisions to preserve
safety in the new local view.

GLOBAL-LEADER-ELECTION:
A1. Upon Global_T expiration:
A2. Global_view++
A3. globally_constrained ← False
A4. unsigned_global_vc ← Construct_Global_VC()
A5. invoke THRESHOLD-SIGN(unsigned_global_vc, Server_id)

B1. Upon THRESHOLD-SIGN returning Global_VC(gv):
B2. Apply Global_VC to data structures
B3. ReliableSendToAllSites(Global_VC)

C1. Upon receiving Global_VC(gv):
C2. Apply Global_VC to data structures

D1. Upon receiving Global_Preinstall_Proof(gv):
D2. Apply Global_Preinstall_Proof()

E1. Upon increasing Global_preinstalled_view:
E2. sorted_vc_messages ← sort Latest_Global_VC by gv
E3. proof ← last �N/2� + 1 Global_VC messages in sorted_vc_messages
E4. ReliableSendToAllSites(proof)
E5. SEND to all local servers: proof
E6. RESET-GLOBAL-TIMER(); Start Global_T
E7. if representative of leader site
E8. invoke GLOBAL-VIEW-CHANGE

Fig. A-14: GLOBAL-LEADER-ELECTION Protocol. When the Global T timers of at least 2f + 1 servers in a majority of sites
expire, the sites run a distributed, global protocol to elect a new leader site by exchanging threshold-signed Global VC messages.

RESET-GLOBAL-PROGRESS-TIMER():
A1. Global_T ← GLOBAL-TIMEOUT()

RESET-LOCAL-TIMER():
B1. if in leader site
B2. Local_T ← GLOBAL-TIMEOUT()/(f + 3)
B3. else
B4. Local_T ← GLOBAL-TIMEOUT()/(f + 3)(f + 2)

GLOBAL_TIMEOUT():
C1. return K ∗ 2�Global_view/N�

Fig. A-15: RESET-GLOBAL-TIMER and RESET-LOCAL-TIMER procedures. These procedures establish the relationships between
Steward’s timeout values at both the local and global levels of the hierarchy. Note that the local timeout at the leader site is
longer than at the non-leader sites to ensure a correct representative of the leader site has enough time to communicate with
correct representatives at the non-leader sites. The values increase as a function of the global view.

26 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, MONTH-MONTH 200X.

GLOBAL-VIEW-CHANGE:
A1. Upon invoking:
A2. Invoke CONSTRUCT-ARU(Global_aru)// returns (Global_Constraint, Aru_Message)

B1. Upon CONSTRUCT-ARU returning (Global_Constraint, Aru_Message):
B2. Store Global_Constraint
B3. if representative of leader site
B4. SEND to all sites: Aru_Message

C1. Upon receiving Aru_Message(site_id, gv, site_aru):
C2. if representative site
C3. SEND to all servers in site: Aru_Message
C4. invoke CONSTRUCT-GLOBAL-CONSTRAINT(Aru_Message) //returns Global_Constraint

D1. Upon CONSTRUCT-GLOBAL-CONSTRAINT returning Global_Constraint:
D2. if representative of non-leader site
D3. SEND to representative of leader site: Global_Constraint

E1. Upon collecting GC_SET with majority distinct Global_Constraint messages:
E2. if representative
E3. Collected_Global_Constraints ← ConstructBundle(GC_SET)
E4. SEND to all in site: Collected_Global_Constraints
E5. Apply Collected_Global_Constraints to Global_History
E6. globally_constrained ← True

F1. Upon receiving Collected_Global_Constraints:
F2. Apply Collected_Global_Constraints to Global_History
F3. globally_constrained ← True
F4. Pending_proposal_aru ← Global_aru

Fig. A-16: GLOBAL-VIEW-CHANGE Protocol, used to globally constrain the servers in a new leader site. These servers obtain
information from a majority of sites, ensuring that they will respect the bindings established by any updates that were globally
ordered in a previous view.

CONSTRUCT-LOCAL-CONSTRAINT(int seq):
A1. if representative
A2. Request_Local_State ← ConstructRequestState(Global_view, Local_view, seq)
A3. SEND to all local servers: Request_Local_State

B1. Upon receiving Request_Local_State(gv, lv, s):
B2. invocation_aru ← s
B3. if (Pending_Proposal_Aru < s)
B4. Request missing Proposals or Globally_Ordered_Update messages from representative
B5. if (Pending_Proposal_Aru ≥ s)
B6. Local_Server_State ← Construct_Local_Server_State(s)
B7. SEND to the representative: Local_Server_State

C1. Upon collecting LSS_Set with 2f+1 distinct Local_Server_State(invocation_aru) messages:
C2. Local_Collected_Servers_State ← Construct_Bundle(LSS_Set)
C3. SEND to all local servers: Local_Collected_Servers_State

D1. Upon receiving Local_Collected_Servers_State:
D2. if (all Local_Server_State messages in bundle contain invocation_aru)
D3. if (Pending_Proposal_Aru ≥ invocation_aru)
D4. Apply Local_Collected_Servers_State to Local_History
D5. locally_constrained ← True
D6. return Local_Collected_Servers_State

Fig. A-17: CONSTRUCT-LOCAL-CONSTRAINT Protocol. The protocol is invoked by a newly-elected leader site representative
and involves the participation of all servers in the leader site. Upon completing the protocol, a server becomes locally constrained
and will act in a way that enforces decisions made in previous local views.

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 27

CONSTRUCT-ARU(int seq):
A1. if representative
A2. Request_Global_State ← ConstructRequestState(Global_view, Local_view, seq)
A3. SEND to all local servers: Request_Global_State

B1. Upon receiving Request_Global_State(gv, lv, s):
B2. invocation_aru ← s
B3. if (Global_aru < s)
B4. Request missing Globally_Ordered_Updates from representative
B5. if (Global_aru ≥ s)
B6. Global_Server_State ← Construct_Global_Server_State(s)
B7. SEND to the representative: Global_Server_State

C1. Upon collecting GSS_Set with 2f+1 distinct Global_Server_State(invocation_aru) messages:
C2. Global_Collected_Servers_State ← Construct_Bundle(GSS_Set)
C3. SEND to all local servers: Global_Collected_Servers_State

D1. Upon receiving Global_Collected_Servers_State:
D2. if (all Global_Server_State message in bundle contain invocation_aru)
D3. if(Global_aru ≥ invocation_aru)
D4. union ← Compute_Global_Union(Global_Collected_Servers_State)
D5. for each Prepare Certificate, PC(gv, lv, seq, u), in union
D6. Invoke THRESHOLD-SIGN(PC, Server_id) //Returns Proposal

E1. Upon THRESHOLD-SIGN returning Proposal P(gv, lv, seq, u):
E2. Global_History[seq].Proposal ← P

F1. Upon completing THRESHOLD-SIGN on all Prepare Certificates in union:
F2. Invoke THRESHOLD-SIGN(union, Server_id) //Returns Global_Constraint

G1. Upon THRESHOLD-SIGN returning Global_Constraint:
G2. Apply each Globally_Ordered_Update in ConstraintMessage to Global_History
G3. union_aru ← Extract_Aru(union)
G4. Invoke THRESHOLD-SIGN(union_aru, Server_id) //Returns Aru_Message

H1. Upon THRESHOLD-SIGN returning Aru_Message:
H2. return (Global_Constraint, Aru_Message)

Fig. A-18: CONSTRUCT-ARU Protocol, used by the leader site to generate an Aru Message during a global view change. The
Aru Message contains a sequence number through which at least f + 1 correct servers in the leader site have globally ordered
all updates.

CONSTRUCT-GLOBAL-CONSTRAINT(Aru_Message A):
A1. invocation_aru ← A.seq
A2. Global_Server_State ← Construct_Global_Server_State(global_context, A.seq)
A3. SEND to the representative: Global_Server_State

B1. Upon collecting GSS_Set with 2f+1 distinct Global_Server_State(invocation_aru) messages:
B2. Global_Collected_Servers_State ← Construct_Bundle(GSS_Set)
B3. SEND to all local servers: Global_Collected_Servers_State

C1. Upon receiving Global_Collected_Servers_State:
C2. if (all Global_Server_State messages in bundle contain invocation_aru)
C3. union ← Compute_Global_Union(Global_Collected_Servers_State)
C4. for each Prepare Certificate, PC(gv, lv, seq, u), in union
C5. Invoke THRESHOLD-SIGN(PC, Server_id) //Returns Proposal

D1. Upon THRESHOLD-SIGN returning Proposal P(gv, lv, seq, u):
D2. Global_History[seq].Proposal ← P

E1. Upon completing THRESHOLD-SIGN on all Prepare Certificates in union:
E2. Invoke THRESHOLD-SIGN(union, Server_id) //Returns Global_Constraint

F1. Upon THRESHOLD-SIGN returning Global_Constraint:
F2. return Global_Constraint

Fig. A-19: CONSTRUCT-GLOBAL-CONSTRAINT Protocol, used by the non-leader sites during a global view change to
generate a Global Constraint message. The Global Constraint contains Proposals and Globally Ordered Updates for all sequence
numbers greater than the sequence number contained in the Aru Message, allowing the servers in the leader site to enforce
decisions made in previous global views.

28 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, MONTH-MONTH 200X.

Construct_Local_Server_State(seq):
A1. state_set ← ∅
A2. For each sequence number i from (seq + 1) to (Global_Aru + W):
A3. if Local_History[i].Proposal, P, exists
A4. state_set ← state_set ∪ P
A5. else if Local_History[i].Prepare_Certificate, PC, exists:
A6. state_set ← state_set ∪ PC
A7. return Local_Server_State(Server_id, gv, lv, seq, state_set)

Construct_Global_Server_State(seq):
B1. state_set ← ∅
B2. For each sequence number i from (seq + 1) to (Global_aru + W):
B3. if Global_History[i].Globally_Ordered_Update, G, exists
B4. state_set ← state_set ∪ G
B5. else if Global_History[i].Proposal, P, exists:
B6. state_set ← state_set ∪ P
B7. else if Global_History[i].Prepare_Certificate, PC, exists:
B8. state_set ← state_set ∪ PC
B9. return Global_Server_State(Server_id, gv, lv, seq, state_set)

Fig. A-20: Construct Server State Procedures. During local and global view changes, individual servers use these procedures
to generate Local Server State and Global Server State messages. These messages contain entries for each sequence number,
above some invocation sequence number, to which a server currently has an update bound.

// Assumption: all entries in css are from Global_view
Compute_Local_Union(Local_Collected_Servers_State css):
A1. union ← ∅
A2. css_unique ← Remove duplicate entries from css
A3. seq_list ← Sort entries in css_unique by increasing (seq, lv)

B1. For each item in seq_list
B2. if any Proposal P
B3. P∗ ← Proposal from latest local view
B4. union ← union ∪ P∗

B5. else if any Prepare Certificate PC
B6. PC∗ ← PC from latest local view
B7. union ← union ∪ PC∗

B8. return union

Compute_Global_Union(Global_Collected_Servers_State css):
C1. union ← ∅
C2. css_unique ← Remove duplicate entries from css
C3. seq_list ← Sort entries in css_unique by increasing (seq, gv, lv)

D1. For each item in seq_list
D2. if any Globally_Ordered_Update
D3. G∗ ← Globally_Ordered_Update with Proposal from latest view (gv, lv)
D4. union ← union ∪ G∗

D5. else
D6. MAX_GV ← global view of entry with latest global view
D7. if any Proposal from MAX_GV
D8. P∗ ← Proposal from MAX_GV and latest local view
D9. union ← union ∪ P∗

D10. else if any Prepare Certificate PC from MAX_GV
D11. PC∗ ← PC from MAX_GV and latest local view
D12. union ← union ∪ PC∗

D13. return union

Compute_Constraint_Union(Collected_Global_Constraints cgc):
E1. union ← ∅
E2. css_unique ← Remove duplicate entries from cgc
E3. seq_list ← Sort entries in css_unique by increasing (seq, gv)

F1. For each item in seq_list
F2. if any Globally_Ordered_Update
F3. G∗ ← Globally_Ordered_Update with Proposal from latest view (gv, lv)
F4. union ← union ∪ G∗

F5. else
F6. MAX_GV ← global view of entry with latest global view
F7. if any Proposal from MAX_GV
F8. P∗ ← Proposal from MAX_GV and latest local view
F9. union ← union ∪ P∗

F10. return union

Fig. A-21: Compute Union Procedures. The procedures are used during local and global view changes. For each entry in the
input set, the procedures remove duplicates (based on sequence number) and, for each sequence number, take the appropriate
entry from the latest view.

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 29

LOCAL-RECONCILIATION:
A1. Upon expiration of LOCAL_RECON_TIMER:
A2. local_session_seq++
A3. requested_aru ← Global_aru
A4. Local_Recon_Request ← ConstructRequest(server_id, local_session_seq, requested_aru)
A5. SEND to all local servers: Local_Recon_Request
A6. Set LOCAL_RECON_TIMER

B1. Upon receiving Local_Recon_Request(server_id, local_session_seq, requested_aru):
B2. if local_session_seq ≤ last_session_seq[server_id]
B3. ignore Local_Recon_Request
B4. if (current_time - last_local_request_time[server_id]) < LOCAL_RECON_THROTTLE_PERIOD
B5. ignore Local_Recon_Request
B6. if requested_aru < last_local_requested_aru[server_id]
B7. ignore Local_Recon_Request
B8. last_local_session_seq[server_id] ← local_session_seq
B9. last_local_request_time[server_id] ← current_time
B10. last_local_requested_aru[server_id] ← requested_aru
B11. if Global_aru > requested_aru
B12. THROTTLE-SEND(requested_aru, Global_aru, LOCAL_RATE, W) to server_id

Fig. A-22: LOCAL-RECONCIILIATION Protocol, used to recover missing Globally Ordered Updates within a site. Servers limit
both the rate at which they will respond to requests and the rate at which they will send requested messages.

GLOBAL-RECONCILIATION:
A1. Upon expiration of GLOBAL_RECON_TIMER:
A2. global_session_seq++
A3. requested_aru ← Global_aru
A4. g ← Global_History[requested_aru].Globally_Ordered_Update
A5. Global_Recon_Request ← ConstructRequest(server_id,global_session_seq,requested_aru,g)
A6. SEND to all local servers: Global_Recon_Request
A7. Set GLOBAL_RECON_TIMER

B1. Upon receiving Global_Recon_Request(server_id, global_session_seq, requested_aru, g):
B2. if global_session_seq ≤ last_global_session_seq[server_id]
B3. ignore Global_Recon_Request
B4. if (current_time - last_global_request_time[server_id]) < GLOBAL_RECON_THROTTLE_PERIOD
B5. ignore Global_Recon_Request
B6. if requested_aru < last_global_requested_aru[server_id]
B7. ignore Global_Recon_Request
B8. if g is not a valid Globally_Ordered_Update for requested_aru
B9. ignore Global_Recon_Request
B10. last_global_session_seq[server_id] ← global_session_seq
B11. last_global_request_time[server_id] ← current_time
B12. last_global_requested_aru[server_id] ← requested_aru
B13. if Global_aru ≥ requested_aru
B14. sig_share ← GENERATE_SIGNATURE_SHARE()
B15. SEND to server_id: sig_share
B16. if Global_aru < requested_aru
B17. when Global_aru ≥ requested_aru:
B18. sig_share ← GENERATE_SIGNATURE_SHARE()
B19. SEND sig_share to server_id

C1. Upon collecting 2f + 1 Partial_sig messages for global_session_seq:
C2. GLOBAL_RECON ← COMBINE(partial_sigs)
C3. SEND to peer server in each site: GLOBAL_RECON

D1. Upon receiving GLOBAL_RECON(site_id, server_id, global_session_seq, requested_aru):
D2. if max_global_requested_aru[site_id] ≤ requested_aru
D3. max_global_requested_aru[site_id] ← requested_aru
D4. else
D5. ignore GLOBAL_RECON
D6. if (site_id == Site_id) or (server_id �= Server_id)
D7. ignore GLOBAL_RECON
D8. if global_session_seq ≤ last_global_session_seq[site_id]
D9. ignore GLOBAL_RECON
D10. if (current_time - last_global_request_time[site_id]) < GLOBAL_RECON_THROTTLE_PERIOD
D11. ignore GLOBAL_RECON
D12. SEND to all local servers: GLOBAL_RECON
D13. last_global_session_seq[site_id] ← global_session_seq
D14. last_global_request_time[site_id] ← current_time
D15. if Global_aru > requested_aru
D16. THROTTLE-SEND(requested_aru, Global_aru, GLOBAL_RATE, W) to server_id

Fig. A-23: GLOBAL-RECONCIILIATION Protocol, used by a site to recover missing Globally Ordered Updates from other wide
area sites. Each server generates threshold-signed reconciliation requests and communicates with a single server at each other
site.

30 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, MONTH-MONTH 200X.

RELIABLE-SEND-TO-ALL-SITES(message m):
A1. Upon invoking:
A2. rel_message ← ConstructReliableMessage(m)
A3. SEND to all servers in site: rel_message
A4. SendToPeers(m)

B1. Upon receiving message Reliable_Message(m):
B2. SendToPeers(m)

C1. Upon receiving message m from a server with my id:
C2. SEND to all servers in site: m

SendToPeers(m):
D1. if m is a threshold signed message from my site and my Server_id ≤ 2f + 1:
D2. my_server_id ← Server_id
D3. for each site S:
D4. SEND to server in site S with Server_id = my_server_id: m

Fig. A-24: RELIABLE-SEND-TO-ALL-SITES Protocol. Each of 2f + 1 servers within a site sends a given message to a peer server
in each other site. When sufficient connectivity exists, the protocol reliably sends a message from one site to all other servers in
all other sites sites despite the behavior of faulty servers.

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 31

APPENDIX B
PROOFS OF CORRECTNESS
In this section we show that Steward provides the service
properties specified in Section 5. We begin with a proof
of safety and then consider liveness.

B.1 Proof of Safety
Our goal in this section is to prove that Steward meets
the following safety property:

S1 - SAFETY If two correct servers execute the ith

update, then these updates are identical.

Proof Strategy: We prove Safety by showing that two
servers cannot globally order conflicting updates for the
same sequence number. We show this using two main
claims. In the first claim, we show that any two servers
which globally order an update in the same global view
for the same sequence number will globally order the
same update. To prove this claim, we show that a leader
site cannot construct conflicting Proposal messages in
the same global view. A conflicting Proposal has the
same sequence number as another Proposal, but it has
a different update. Since globally ordering two different
updates for the same sequence number in the same
global view would require two different Proposals from
the same global view, and since only one Proposal can
be constructed within a global view, all servers that
globally order an update for a given sequence number
in the same global view must order the same update. In
the second claim, we show that any two servers which
globally order an update in different global views for the
same sequence number must order the same update. To
prove this claim, we show that a leader site from a later
global view cannot construct a Proposal conflicting with
one used by a server in an earlier global view to globally
order an update for that sequence number. The value
that may be contained in a Proposal for this sequence
number is thus anchored. Since no Proposals can be
created that conflict with the one that has been globally
ordered, no correct server can globally order a different
update with the same sequence number. Since a server
only executes an update once it has globally ordered an
update for all previous sequence numbers, two servers
executing the ith update will therefore execute the same
update.

We now proceed to prove the first main claim:

Claim A.1: Let u be the first update globally ordered
by any server for sequence number seq, and let gv
be the global view in which u was globally ordered.
Then if any other server globally orders an update for
sequence number seq in global view gv, it will globally
order u.

To prove this claim, we use the following lemma,
which shows that conflicting Proposal messages cannot

be constructed in the same global view:

Lemma A.1: Let P1(gv, lv, seq, u) be the first
threshold-signed Proposal message constructed by any
server in leader site S for sequence number seq. Then no
other Proposal message P2(gv, lv′, seq, u′) for lv′ ≥ lv,
with u′ �= u, can be constructed.

We prove Lemma A.1 with a series of lemmas. We
begin with two preliminary lemmas, proving that two
servers cannot collect conflicting Prepare Certificates or
construct conflicting Proposals in the same global and
local view.

Lemma A.2: Let PC1(gv, lv, seq, u) be a Prepare
Certificate collected by some server in leader site S.
Then no server in S can collect a different Prepare
Certificate, PC2(gv, lv, seq, u′), with (u �= u′).

Proof: We assume that both Prepare Certificates
were collected and show that this leads to a contra-
diction. PC1 contains a Pre-Prepare(gv, lv, seq, u) and
2f Prepare(gv, lv, seq, Digest(u)) messages from distinct
servers. Since there are at most f faulty servers in
S, at least f + 1 of the messages in PC1 were from
correct servers. PC2 contains similar messages, but with
u′ instead of u. Since any two sets of 2f + 1 messages
intersect on at least one correct server, there exists a
correct server that contributed to both PC1 and PC2.
Assume, without loss of generality, that this server con-
tributed to PC1 first (either by sending the Pre-Prepare
message or by responding to it). If this server was the
representative, it would not have sent the second Pre-
Prepare message, because, from Figure A-10 line A3,
it increments Global seq and does not return to seq in
this local view. If this server was a non-representative,
it would not have contributed a Prepare in response to
the second Pre-Prepare, since this would have generated
a conflict (Figure A-8, line A8). Thus, this server did not
contribute to PC2, a contradiction.

Lemma A.3: Let P1(gv, lv, seq, u) be a Proposal
message constructed by some server in leader site S.
Then no other Proposal message P2(gv, lv, seq, u′) with
(u �= u′) can be constructed by any server in S.

Proof: By Lemma A.2, only one Prepare Certificate
can be constructed in each view (gv, lv) for a given
sequence number seq. For P2 to be constructed, at least
f + 1 correct servers would have had to send partial
signatures on P2, after obtaining a Prepare Certificate
PC2 reflecting the binding of seq to u′ (Figure A-10, line
C7). Since P1 was constructed, there must have been a
Prepare Certificate PC1 reflecting the binding of seq to
u. Thus, the f + 1 correct servers cannot have obtained
PC2, since this would contradict Lemma A.2.

We now show that two conflicting Proposal messages

32 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, MONTH-MONTH 200X.

cannot be constructed in the same global view, even
across local view changes. In proving this, we use the
following invariant:

INVARIANT A.1: Let P(gv, lv, seq, u) be the first
threshold-signed Proposal message constructed by any
server in leader site S for sequence number seq in global
view gv. We say that Invariant A.1 holds with respect to
P if the following conditions hold in leader site S in
global view gv:

1) There exists a set of at least f + 1 correct servers
with a Prepare Certificate PC(gv, lv′, seq, u) or
a Proposal(gv, lv′, seq, u), for lv′ ≥ lv, in
their Local History[seq] data structure, or a Glob-
ally Ordered Update(gv′, seq, u), for gv′ ≥ gv, in
their Global History[seq] data structure.

2) There does not exist a server with any conflict-
ing Prepare Certificate or Proposal from any view
(gv, lv′), with lv′ ≥ lv, or a conflicting Glob-
ally Ordered Update from any global view gv′ ≥
gv.

We first show that the invariant holds in the first
global and local view in which any Proposal might
have been constructed for a given sequence number.
We then show that the invariant holds throughout the
remainder of the global view. Finally, we show that if the
invariant holds, no Proposal message conflicting with
the first Proposal that was constructed can be created.
In other words, once a Proposal has been constructed
for sequence number seq, there will always exist a set
of at least f + 1 correct servers which maintain and
enforce the binding reflected in the Proposal.

Lemma A.4: Let P(gv, lv, seq, u) be the first threshold-
signed Proposal message constructed by any server in
leader site S for sequence number seq in global view
gv. Then when P is constructed, Invariant A.1 holds
with respect to P, and it holds for the remainder of (gv,
lv).

Proof: Since P is constructed, there exists a set of at
least f + 1 correct servers which sent a partial signature
on P (Figure A-10, line C7). These servers do so after
collecting a Prepare Certificate(gv, lv, seq, u) binding
seq to u (Figure A-10, line C3). By Lemmas A.2 and
A.3, any server that collects a Prepare Certificate or a
Proposal in (gv, lv) collects the same one. Since this is
the first Proposal that was constructed, and a Proposal
is required to globally order an update, the only Glob-
ally Ordered Update that can exist binds seq to u. Thus,
the invariant is met when the Proposal is constructed.

According to the rules for updating the Local History
data structure, a correct server with a Prepare Certificate
from (gv, lv) will not replace it and may only add a
Proposal message from the same view (Figure A-10, line
D3). By Lemma A.3, this Proposal is unique, and since it
contains the same update and sequence number as the

unique Prepare Certificate, it will not conflict with the
Prepare Certificate.

A correct server with a Proposal will not replace
it with any other message while in global view gv.
A correct server with a Globally Ordered Update will
never replace it. Thus, Invariant A.1 holds with respect
to P for the remainder of (gv, lv).

We now proceed to show that Invariant A.1 holds
across local view changes. Before proceeding, we
introduce the following terminology:

DEFINITION A.1: We say that an execution of the
CONSTRUCT-LOCAL-CONSTRAINT protocol completes
at a server within the site in a view (gv, lv) if
that server successfully generates and applies a
Local Collected Servers State message for (gv, lv).

We first prove the following property of CONSTRUCT-
LOCAL-CONSTRAINT:

Lemma A.5: Let P(gv, lv, seq, u) be the first threshold-
signed Proposal message constructed by any server in
leader site S for sequence number seq in global view gv.
If Invariant A.1 holds with respect to P at the beginning
of a run of CONSTRUCT-LOCAL-CONSTRAINT, then it is
never violated during the run.

Proof: During the run of CONSTRUCT-LOCAL-
CONSTRAINT, a server only alters its Local History[seq]
data structure during the reconciliation phase (which
occurs before sending a Local Server State message,
Figure A-17 line B7) or when processing the resultant
Local Collected Servers State message. During the rec-
onciliation phase, a correct server will only replace a
Prepare Certificate with a Proposal (either independently
or in a Globally Ordered Update), since the server and
the representative are only exchanging Proposals and
Globally Ordered Updates. Since Invariant A.1 holds at
the beginning of the run, any Proposal from a later
local view than the Prepare Certificate held by some
correct server will not conflict with the Prepare Certifi-
cate. A server with a Globally Ordered Update in its
Global History data structure does not remove it. Thus,
the invariant is not violated by this reconciliation.

If one or more correct servers processes the resultant
Local Collected Servers State message, we must show
that the invariant still holds.

When a correct server processes the Lo-
cal Collected Servers State message (Figure A-3,
block D), there are two cases to consider. First, if the
message contains an entry for seq (i.e., it contains either
a Prepare Certificate or a Proposal binding seq to an
update), then the correct server adopts the binding.
In the second case, the Local Collected Servers State
message does not contain an entry for seq, and the
correct server clears out its Prepare Certificate for seq, if
it has one. We need to show that in both cases, Invariant

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 33

A.1 is not violated.
The Local Server State message from at least one

correct server from the set of at least f + 1 correct
servers maintained by the invariant appears in any
Local Collected Servers State message, since any two
sets of 2f + 1 servers intersect on at least one correct
server. We consider the contents of this server’s Lo-
cal Server State message. If this server received a Re-
quest Local State message with an invocation sequence
number lower than seq, then the server includes its
entry binding seq to u in the Local Server State mes-
sage (Figure A-20, Block A), after bringing its Pend-
ing Proposal Aru up to the invocation sequence number
(if necessary). Invariant A.1 guarantees that the Prepare
Certificate or Proposal from this server is the latest entry
for sequence number seq. Thus, the entry binding seq
to u in any Local Collected Servers State bundle will
not be removed by the Compute Local Union function
(Figure A-21 line B3 or B6).

If this server received a Request Local State message
with an invocation sequence number greater than or
equal to seq, then the server will not report a binding
for seq, since it will obtain either a Proposal or a Glob-
ally Ordered Update via reconciliation before sending
its Local Server State message. In turn, the server only
applies the Local Collected Servers State if the 2f +
1 Local Server State messages contained therein con-
tain the same invocation sequence number, which was
greater than or equal to seq (Figure A-17, line D2).
Since a correct server only sends a Local Server State
message if its Pending Proposal Aru is greater than or
equal to the invocation sequence number it received
(Figure A-17, line B5), this implies that at least f + 1
correct servers have a Pending Proposal Aru greater
than or equal to seq. The invariant ensures that all such
Proposals or Globally Ordered Updates bind seq to u.
Since only Proposals with a sequence number greater
than the invocation sequence number may be removed
by applying the Local Collected Servers State message,
and since Globally Ordered Update messages are never
removed, applying the message will not violate Invariant
A.1.

Our next goal is to show that if Invariant A.1 holds
at the beginning of a view after the view in which a
Proposal has been constructed, then it holds throughout
the view.

Lemma A.6: Let P(gv, lv, seq, u) be the first threshold-
signed Proposal message constructed by any server
in leader site S for sequence number seq in global
view gv. If Invariant A.1 holds with respect to P at the
beginning of a view (gv, lv′), with lv′ ≥ lv, then it holds
throughout the view.

Proof: To show that the invariant
will not be violated during the view, we
show that no server can collect a Prepare

Certificate(gv, lv′, seq, u′), Proposal(gv, lv′, seq, u′),
or Globally Ordered Update(gv, seq,u′), for u �= u′, that
would cause the invariant to be violated.

Since Invariant A.1 holds at the beginning of the
view, there exists a set of at least f + 1 correct servers
with a Prepare Certificate or a Proposal in their Lo-
cal History[seq] data structure binding seq to u, or a
Globally Ordered Update in their Global History[seq]
data structure binding seq to u. If a conflicting Pre-
pare Certificate is constructed, then some server col-
lected a Pre-Prepare(gv, lv′, seq, u′) message and 2f
Prepare(gv, lv′, seq, Digest(u′)) messages. At least f+1 of
these messages were from correct servers. This implies
that at least one correct server from the set maintained
by the invariant contributed to the conflicting Prepare
Certificate (either by sending a Pre-Prepare or a Prepare).
This cannot occur because the server would have seen
a conflict in its Local History[seq] data structure (Figure
A-8, A8) or in its Global History[seq] data structure (Fig-
ure A-8, A18). Thus, the conflicting Prepare Certificate
cannot be constructed.

Since no server can collect a conflicting Prepare Cer-
tificate, no server can construct a conflicting Proposal.
Thus, by the rules of updating the Local History data
structure, a correct server only replaces its Prepare Cer-
tificate (if any) with a Prepare Certificate or Proposal
from (gv, lv′), which cannot conflict. Since a Proposal is
needed to construct a Globally Ordered Update, no con-
flicting Globally Ordered Update can be constructed,
and no Globally Ordered Update is ever removed from
the Global History data structure. Thus, Invariant A.1
holds throughout (gv, lv′).

We can now prove Lemma A.1:

Proof: By Lemma A.4, Invariant A.1 holds with re-
spect to P throughout (gv, lv). By Lemma A.5, the invari-
ant holds with respect to P during and after CONSTRUCT-
LOCAL-CONSTRAINT. By Lemma A.6, the invariant holds
at the beginning and end of view (gv, lv + 1). Repeated
applications of Lemma A.5 and Lemma A.6 shows that
the invariant always holds in global view gv.

In order for P2 to be constructed, at least f + 1
correct servers must send a partial signature on P2 after
collecting a corresponding Prepare Certificate (Figure A-
10, line C3). Since the invariant holds throughout gv, at
least f + 1 correct servers do not collect such a Prepare
Certificate and do not send such a partial signature. This
leaves only 2f servers remaining, which is insufficient
to construct the Proposal. Since a Proposal is needed
to construct a Globally Ordered Update, no conflicting
Globally Ordered Update can be constructed.

Finally, we can prove Claim A.1:

Proof: To globally order an update u in global
view gv for sequence number seq, a server needs a
Proposal(gv, *, seq, u) message and �S/2� Accept corre-

34 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, MONTH-MONTH 200X.

sponding Accept messages. By Lemma A.1, all Proposal
messages constructed in global view gv are for the same
update, which implies that all servers which globally
order an update in global view gv for sequence number
seq globally order the same update.

We now prove the second main claim:

Claim A.2: Let u be the first update globally ordered
by any server for sequence number seq, and let gv be
the global view in which u was globally ordered. Then if
any other server globally orders an update for sequence
number seq in a global view gv′, with gv′ > gv, it will
globally order u.

We prove Claim A.2 using the following lemma,
which shows that, once an update has been globally
ordered for a given sequence number, no conflicting
Proposal messages can be generated for that sequence
number in any future global view.

Lemma A.7: Let u be the first update globally
ordered by any server for sequence number seq with
corresponding Proposal P1(gv, lv, seq, u). Then no other
Proposal message P2(gv′, *, seq, u′) for gv′ > gv, with
u′ �= u, can be constructed.

We prove Lemma A.7 using a series of lemmas. We
use a strategy similar to the one used in proving Lemma
A.1 above, and we maintain the following invariant:

INVARIANT A.2: Let u be the first update globally
ordered by any server for sequence number seq, and
let gv be the global view in which u was globally
ordered. Let P(gv, lv, seq, u) be the first Proposal message
constructed by any server in the leader site in gv for
sequence number seq. We say that Invariant A.2 holds
with respect to P if the following conditions hold:

1) There exists a majority of sites, each with at
least f + 1 correct servers with a Prepare
Certificate(gv, lv′, seq, u), a Proposal(gv′, *, seq, u),
or a
Globally Ordered Update(gv′, seq, u), with gv′ ≥
gv and lv′ ≥ lv, in its Global History[seq] data
structure.

2) There does not exist, at any site in the
system, a server with any conflicting Prepare
Certificate(gv′, lv′, seq, u′), Proposal(gv′, *, seq, u′),
or Globally Ordered Update(gv′, seq, u′), with
gv′ ≥ gv, lv′ ≥ lv, and u′ �= u.

We first show that Invariant A.2 holds when the first
update is globally ordered for sequence number seq and
that it holds throughout the view in which it is ordered.

Lemma A.8: Let u be the first update globally ordered
by any server for sequence number seq, and let gv be
the global view in which u was globally ordered.

Let P(gv, lv, seq, u) be the first Proposal message
constructed by any server in the leader site in gv for
sequence number seq. Then when u is globally ordered,
Invariant A.2 holds with respect to P, and it holds for
the remainder of global view gv.

Proof: Since u was globally ordered in gv, some
server collected a Proposal(gv, *, seq, u) message and
�S/2� Accept(gv, *, seq, Digest(u)) messages. Each of
the �S/2� sites that generated a threshold-signed Accept
message has at least f+1 correct servers that contributed
to the Accept, since 2f + 1 partial signatures are re-
quired to construct the Accept and at most f are faulty.
These servers store P in Global History[seq].Proposal
when they apply it (Figure A-4, block A). Since the
leader site constructed P and P is threshold-signed,
at least f + 1 correct servers in the leader site have
either a Prepare Certificate corresponding to P in
Global History[seq].Prepare Certificate or the Proposal
P in Global History[seq].Proposal. Thus, Condition 1 is
met.

By Lemma A.1, all Proposals generated by the leader
site for sequence number seq in gv contain the same
update. Thus, no server can have a conflicting Proposal
or Globally Ordered Update, since gv is the first view in
which an update has been globally ordered for sequence
number seq. Since Invariant A.1 holds in gv, no server
has a conflicting Prepare Certificate from (gv, lv′), with
lv′ ≥ lv. Thus, Condition 2 is met.

We now show that Condition 1 is not violated
throughout the rest of global view gv. By
the rules of updating the Global History data
structure in gv, a correct server with an entry in
Global History[seq].Prepare Certificate only removes
it if it generates a Proposal message from the
same global view (Figure A-4, lines A7 and A14),
which does not conflict with the Prepare Certificate
because it contains u, and thus it does not violate
Condition 1. Similarly, a correct server in gv only
replaces an entry in Global History[seq].Proposal
with a Globally Ordered Update. Since a
Globally Ordered Update contains a Proposal
from gv, and all Proposals from gv for sequence
number seq contain u, Condition 1 is still met.
No correct server ever replaces an entry in
Global History[seq].Globally Ordered Update.

We now show that Invariant A.2 holds across global
view changes. We start by showing that the CONSTRUCT-
ARU and CONSTRUCT-GLOBAL-CONSTRAINT protocols,
used during a global view change in the leader site
and non-leader sites, respectively, will not cause the
invariant to be violated. We then show that if any
correct server in the leader site becomes globally
constrained by completing the global view change
protocol, the invariant will still hold after applying
the Collected Global Constraints message to its data
structure.

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 35

Lemma A.9: Let u be the first update globally ordered
by any server for sequence number seq, and let gv be
the global view in which u was globally ordered.
Let P(gv, lv, seq, u) be the first Proposal message
constructed by any server in the leader site in gv for
sequence number seq. Assume Invariant A.2 holds with
respect to P, and let S be one of the (majority) sites
maintained by the first condition of the invariant. Then
if a run of CONSTRUCT-ARU begins at S, the invariant
is never violated during the run.

Proof: During a run of CONSTRUCT-ARU, a correct
server only modifies its Global History[seq] data struc-
ture in three cases. We show that, in each case, Invariant
A.2 will not be violated if it is already met.

The first case occurs during the reconciliation phase of
the protocol. In this phase, a correct server with either
a Prepare Certificate or Proposal in Global History[seq]
may replace it with a Globally Ordered Update, since
the server and the representative only exchange Glob-
ally Ordered Update messages. Since Invariant A.2
holds at the beginning of the run, no server has a
Globally Ordered Update from any view gv′ ≥ gv that
conflicts with the binding of seq to u. Since u could only
have been globally ordered in a global view gv′ ≥ gv,
no conflicting Globally Ordered Update exists from a
previous global view. Thus, Invariant A.2 is not violated
during the reconciliation phase.

In the second case, a correct server with a Prepare
Certificate in Global History[seq] tries to construct cor-
responding Proposals (replacing the Prepare Certificate)
by invoking THRESHOLD-SIGN (Figure A-18, line D6).
Since the Proposal is for the same binding as the Prepare
Certificate, the invariant is not violated.

In the third case, a correct server applies
any Globally Ordered Updates appearing in the
Global Constraint message to its Global History
data structure (Figure A-18, line G2). Since
Invariant A.2 holds at the beginning of the run,
no Globally Ordered Update exists from any view
gv′ ≥ gv that conflicts with the binding of seq to u. Since
u could only have been globally ordered in a global
view gv′ ≥ gv, no conflicting Globally Ordered Update
exists from a previous global view.

Since these are the only cases in which
Global History[seq] is modified during the protocol, the
invariant holds throughout the run.

Lemma A.10: Let u be the first update globally
ordered by any server for sequence number seq, and let
gv be the global view in which u was globally ordered.
Let P(gv, lv, seq, u) be the first Proposal message
constructed by any server in the leader site in gv for
sequence number seq. Assume Invariant A.2 holds with
respect to P, and let S be one of the (majority) sites
maintained by the first condition of the invariant. Then
if a run of CONSTRUCT-GLOBAL-CONSTRAINT begins at

S, the invariant is never violated during the run.

Proof: During a run of CONSTRUCT-GLOBAL-
CONSTRAINT, a correct server only modifies its
Global History[seq] data structure when trying to con-
struct Proposals corresponding to any Prepare Certifi-
cates appearing in the union (Figure A-19, line C5). Since
the Proposal resulting from THRESHOLD-SIGN is for the
same binding as the Prepare Certificate, the invariant is
not violated.

We now show that if Invariant A.2 holds at the
beginning of a run of the GLOBAL-VIEW-CHANGE
protocol after the global view in which an update was
globally ordered, then the invariant is never violated
during the run.

Lemma A.11: Let u be the first update globally
ordered by any server for sequence number seq, and
let gv be the global view in which u was globally
ordered. Let P(gv, lv, seq, u) be the first Proposal
message constructed by any server in the leader site
in gv for sequence number seq. Then if Invariant A.2
holds with respect to P at the beginning of a run of the
Global View Change protocol, then it is never violated
during the run.

Proof: During a run of GLOBAL-VIEW-CHANGE, a
correct server may only modify its Global History[seq]
data structure in three cases. The first occurs in the leader
site, during a run of CONSTRUCT-ARU (Figure A-16, line
A2). By Lemma A.9, Invariant A.2 is not violated during
this protocol. The second case occurs at the non-leader
sites, during a run of CONSTRUCT-GLOBAL-CONSTRAINT
(Figure A-16, line C4). By Lemma A.10, Invariant A.2 is
not violated during this protocol.

The final case occurs at the leader site when a correct
server becomes globally constrained by applying a Col-
lected Global Constraints message to its Global History
data structure (Figure A-16, lines E5 and F2). We must
now show that Invariant A.2 is not violated in this case.

Any Collected Global Constraints message received
by a correct server contains a Global Constraint message
from at least one site maintained by Invariant A.2, since
any two majorities intersect on at least one site. We con-
sider the Global Constraint message sent by this site, S.
The same logic will apply when Global Constraint mes-
sages from more than one site in the set maintained by
the invariant appear in the Collected Global Constraints
message.

We first consider the case where S is a non-leader site.
There are two sub-cases to consider.

Case 1a: In the first sub-case, the Aru Message gen-
erated by the leader site in CONSTRUCT-ARU contains
a sequence number less than seq. In this case, each
of the f + 1 correct servers in S maintained by In-
variant A.2 reports a Proposal message binding seq
to u in its Global Server State message (Figure A-20,

36 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, MONTH-MONTH 200X.

Block B). At least one such message will appear in
the Global Collected Servers State bundle, since any
two sets of 2f + 1 intersect on at least one correct
server. Invariant A.2 maintains that the entry binding
seq to u is the latest, and thus it will not be removed
by the Compute Global Union procedure (Figure A-
21, Blocks C and D). The resultant Global Constraint
message therefore binds seq to u. Invariant A.2 also
guarantees that this entry or one with the same binding
will be the latest among those contained in the Col-
lected Global Constraints message, and thus it will not
be removed by the Compute Constraint Union func-
tion run when applying the message to Global History
(Figure A-21, Blocks E and F) By the rules of applying
the Collected Global Constraints message (Figure A-4,
Block D), the binding of seq to u will be adopted by the
correct servers in the leader site that become globally
constrained, and thus Invariant A.2 is not violated.

Case 1b: In the second sub-case, the Aru Message
generated by the leader site in CONSTRUCT-ARU contains
a sequence number greater than or equal to seq. In
this case, no entry binding seq to u will be reported in
the Global Constraint message. In this case, we show
that at least f + 1 correct servers in the leader site
have already globally ordered seq. The invariant guar-
antees that those servers which have already globally
ordered an update for seq have globally ordered u.
To construct the Aru Message, at least f + 1 correct
servers contributed partial signatures to the result of
calling Extract Aru (Figure A-18, line G3) on the union
derived from the Global Collected Servers State bun-
dle. Thus, at least f + 1 correct servers accepted the
Global Collected Servers State message as valid, and,
at Figure A-18, line D3, enforced that their Global aru
was at least as high as the invocation sequence num-
ber (which was greater than or equal to seq). Thus,
these servers have Globally Ordered Update messages
for seq, and the invariant holds in this case.

We must now consider the case where S is the leader
site. As before, there are two sub-cases to consider. We
must show that Invariant A.2 is not violated in each
case. During CONSTRUCT-ARU, the Global Server State
message from at least one correct server from the set of
at least f +1 correct servers maintained by the invariant
appears in any Collected Global Servers State message,
since any two sets of 2f + 1 servers intersect on at
least one correct server. We consider the contents of this
server’s Global Server State message.

Case 2a: In the first sub-case, if this server received
a Request Global State message with an invocation se-
quence number lower than seq, then the server includes
its entry binding seq to u in the Global Server State
message, after bringing its Global Aru up to the in-
vocation sequence number (if necessary) (Figure A-18,
lines B5 and B7). Invariant A.2 guarantees that the Pre-
pare Certificate, Proposal, or Globally Ordered Update
binding seq to u is the latest entry for sequence num-
ber seq. Thus, the entry binding seq to u in any

Global Collected Servers State bundle will not be re-
moved by the Compute Global Union function (Fig-
ure A-21, Blocks C and D) and will appear in the
resultant Global Constraint message. Thus, the Col-
lected Global Constraints message will bind seq to u,
and by the rules of applying this message to the
Global History[seq] data structure, Invariant A.2 is not
violated when the correct servers in the leader site
become globally constrained by applying the mesasge
(Figure A-4, block D).

Case 2b: If this server received a Request Global State
message with an invocation sequence number greater
than or equal to seq, then the server will not re-
port a binding for seq, since it will obtain a Glob-
ally Ordered Update via reconciliation before send-
ing its Global Server State message (Figure A-18, lines
B4). In turn, the server only contributes a partial
signature on the Aru Message if it received a valid
Global Collected Servers State message, which implies
that the 2f + 1 Global Server State messages in the
Global Collected Servers State bundle contained the
same invocation sequence number, which was greater
than or equal to seq (Figure A-18, line D2). Since a correct
server only sends a Global Server State message if its
Global Aru is greater than or equal to the invocation
sequence number it received (Figure A-18, line D3),
this implies that at least f + 1 correct servers have a
Global Aru greater than or equal to seq. The invariant
ensures that all such Globally Ordered Updates bind
seq to u. Thus, even if the Collected Global Constraints
message does not contain an entry binding seq to u,
the leader site and �S/2� non-leader sites will maintain
Invariant A.2.

Corollary A.12: Let u be the first update globally
ordered by any server for sequence number seq, and
let gv be the global view in which u was globally
ordered. Let P(gv, lv, seq, u) be the first Proposal
message constructed by any server in the leader site
in gv for sequence number seq. Then if Invariant A.2
holds with respect to P at the beginning of a run of
the GLOBAL-VIEW-CHANGE protocol, then if at least
f + 1 correct servers in the leader site become globally
constrained by completing the GLOBAL-VIEW-CHANGE
protocol, the leader site will be in the set maintained by
Condition 1 of Invariant A.2.

Proof: We consider each of the four sub-cases de-
scribed in Lemma A.11. In Cases 1a and 2a, any correct
server that becomes globally constrained binds seq to
u. In Cases 1b and 2b, there exists a set of at least f + 1
correct servers that have globally ordered u for sequence
number seq. Thus, in all four cases, if at least f + 1
correct servers become globally constrained, the leader
site meets the data structure condition of of Condition 1
of Invariant A.2.

Our next goal is to show that if Invariant A.2 holds at

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 37

the beginning of a global view after which an update has
been globally ordered, then it holds throughout the view.

Lemma A.13: Let u be the first update globally
ordered by any server for sequence number seq, and
let gv be the global view in which gv was globally
ordered. Let P(gv, lv, seq, u) be the first Proposal
message constructed by any server in the leader site in
gv for sequence number seq. Then if Invariant A.2 holds
with respect to P at the beginning of a global view
(gv′, *), with gv′ > gv, then it holds throughout the view.

Proof: To show that the invariant will not be violated
during global view gv′, we show that no conflicting Pre-
pare Certificate, Proposal, or Globally Ordered Update
can be constructed during the view that would cause the
invariant to be violated.

We assume that a conflicting Prepare Certificate PC
is collected and show that this leads to a contradiction.
This then implies that no conflicting Proposals or Glob-
ally Ordered Updates can be constructed.

If PC is collected, then some server col-
lected a Pre-Prepare(gv′, lv, seq, u′) and 2f
Prepare(gv′, lv, seq, Digest(u′)) for some local view
lv and u′ �= u. At least f + 1 of these messages were
from correct, servers. Moreover, this implies that at least
f + 1 correct servers were globally constrained.

By Corollary A.12, since at least f + 1 correct servers
became globally constrained in gv′, the leader site meets
Condition 1 of Invariant A.2, and it thus has at least f +1
correct servers with a Prepare Certificate, Proposal, or
Globally Ordered Update binding seq to u. At least one
server from the set of at least f+1 correct servers binding
seq to u contributed to the construction of PC. A correct
representative would not send such a Pre-Prepare mes-
sage because the Get Next To Propose() routine would
return the constrained update u (Figure A-12, line A3
or A5). Similarly, a correct server would see a conflict
(Figure A-8, line A10 or A13).

Since no server can collect a conflicting Prepare
Certificate, no server can construct a conflicting Pro-
posal. Thus, no server can collect a conflicting Glob-
ally Ordered Update, since this would require a con-
flicting Proposal.

Thus, Invariant A.2 holds throughout global view gv′.

We can now prove Lemma A.7:

Proof: By Lemma A.8, Invariant A.2 holds with
respect to P1 throughout global view gv. By Lemma
A.11, the invariant holds with respect to P1 during and
after the GLOBAL-VIEW-CHANGE protocol. By Lemma
A.13, the invariant holds at the beginning and end of
global view gv+1. Repeated application of Lemma A.11
and Lemma A.13 shows that the invariant always holds
for all global views gv′ > gv.

In order for P2 to be constructed, at least f + 1

correct servers must send a partial signature on P2 after
collecting a corresponding Prepare Certificate (Figure A-
10, line C3). Since the invariant holds, at least f+1 correct
servers do not collect such a Prepare Certificate and do
not send such a partial signature. This leaves only 2f
servers remaining, which is insufficient to construct the
Proposal.

Finally, we can prove Claim A.2:

Proof: We assume that two servers globally order
conflicting updates with the same sequence number in
two global views gv and gv′ and show that this leads to
a contradiction.

Without loss of generality, assume that a server glob-
ally orders update u in gv, with gv < gv′. This server
collected a a Proposal(gv, *, seq, u) message and �S/2�
corresponding Accept messages. By Lemma A.7, any fu-
ture Proposal message for sequence number seq contains
update u, including the Proposal from gv′. This implies
that another server that globally orders an update in gv′

for sequence number seq must do so using the Proposal
containing u, which contradicts the fact that it globally
ordered u′ for sequence number seq.

We can now prove SAFETY - S1.

Proof: By Claims A.1 and A.2, if two servers globally
order an update for the same sequence number in any
two global views, then they globally order the same
update. Thus, if two servers execute an update for
any sequence number, they execute the same update,
completing the proof.

We now prove that Steward meets the following
validity property:

S2 - VALIDITY Only an update that was proposed by
a client may be executed.

Proof: A server executes an update when it has
been globally ordered. To globally order an update,
a server obtains a Proposal and �S/2� corresponding
Accept messages. To construct a Proposal, at least f + 1
correct servers collect a Prepare Certificate and invoke
THRESHOLD-SIGN. To collect a Prepare Certificate, at
least f + 1 correct servers must have sent either a
Pre-Prepare or a Prepare in response to a Pre-Prepare.
From the validity check run on each incoming message
(Figure A-6, lines A7 - A9), a Pre-Prepare message is
only processed if the update contained within has a valid
client signature. Since we assume that client signatures
cannot be forged, only a valid update, proposed by a
client, may be globally ordered.

B.2 Liveness Proof
We now prove that Steward meets the following liveness
property:

38 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, MONTH-MONTH 200X.

L1 - GLOBAL LIVENESS If the system is stable with
respect to time T , then if, after time T , a stable server
receives an update which it has not executed, then
global progress eventually occurs.

Proof Strategy: We prove Global Liveness by contra-
diction. We assume that global progress does not occur
and show that, if the system is stable and a stable server
receives an update which it has not executed, then the
system will reach a state in which some stable server
will execute an update, a contradiction. We prove Global
Liveness using three main claims. In the first claim, we
show that if no global progress occurs, then all stable
servers eventually reconcile their Global History data
structures to a common point. Specifically, the stable
servers set their Global aru variables to the maximum
sequence number through which any stable server has
executed all updates. By definition, if any stable server
executes an update beyond this point, global progress
will have been made, and we will have reached a contra-
diction. In the second claim, we show that, once this rec-
onciliation has occurred, the system eventually reaches
a state in which a stable representative of a stable leader
site remains in power for sufficiently long to be able to
complete the global view change protocol, which is a
precondition for globally ordering an update that would
cause progress to occur. To prove the second claim,
we first prove three subclaims. The first two subclaims
show that, eventually, the stable sites will move through
global views together, and within each stable site, the
stable servers will move through local views together.
The third subclaim establishes relationships between the
global and local timeouts, which we use to show that
the stable servers will eventually remain in their views
long enough for global progress to be made. Finally, in
the third claim, we show that a stable representative of a
stable leader site will eventually be able to globally order
(and execute) an update which it has not previously
executed, which contradicts our assumption.

In the claims and proofs that follow, we assume that
the system has already reached a stabilization time, T ,
at which the system became stable. Since we assume
that no global progress occurs, we use the following
definition:

DEFINITION B.1: We say that a sequence number
is the max stable seq if, assuming no further global
progress is made, it is the last sequence number for
which any stable server has executed an update.

We now proceed to prove the first main claim:

Claim B.1: If no global progress occurs, then all stable
servers in all stable sites eventually set their Global aru
variables to max stable seq.

To prove Claim B.1, we first prove two lemmas

relating to LOCAL-RECONCILIATION and GLOBAL-
RECONCILIATION.

Lemma B.1: Let aru be the Global aru of some stable
server, s, in stable Site S at time T . Then all stable
servers in S eventually have a Global aru of at least aru.

Proof: The stable servers in S run LOCAL-
RECONCILIATION by sending a Local Recon Request
message every LOCAL-RECON-THROTTLE-PERIOD time
units (Figure A-22, line A1). Since S is stable, s will
receive a Local Recon Request message from each stable
server within one local message delay. If the requesting
server, r, has a Global aru less than aru, s will send to r
Globally Ordered Update messages for each sequence
number in the difference. These messages will arrive
in bounded time. Thus, each stable server in S sets it
Global aru to at least aru.

Lemma B.2: Let S be a stable site in which all stable
servers have a Global aru of at least aru at time T . Then
if no global progress occurs, at least one stable server in
all stable sites eventually has a Global aru of at least aru.

Proof: Since no global progress occurs, there exists
some sequence number aru′, for each stable site, R, that
is the last sequence number for which a stable server
in R globally ordered an update. By Lemma B.1, all
stable servers in R eventually reach aru′ via the LOCAL-
RECONCILIATION protocol.

The stable servers in R run GLOBAL-RECONCILIATION
by sending a Global Recon Request message every
GLOBAL-RECON-THROTTLE-PERIOD time units (Figure
A-23, line A1). Since R is stable, each stable server in R
receives the request of all other stable servers in R within
a local message delay. Upon receiving a request, a stable
server will send a Partial Sig message to the requester,
since they have the same Global aru, aru′. Each stable
server can thus construct a threshold-signed GLOBAL-
RECON message containing aru′. Since there are 2f + 1
stable servers, the pigeonhole principle guarantees that
at least one of them sends a GLOBAL-RECON message
to a stable peer in each other stable site. The message
arrives in one wide area message delay.

If all stable sites send a GLOBAL-RECON message
containing a requested aru value of at least aru, then
the lemma holds, since at least f + 1 correct servers
contributed a Partial sig on such a message, and at
least one of them is stable. If there exists any stable
site R that sends a GLOBAL-RECON message with a
requested aru value lower than aru, we must show that
R will eventually have at least one stable server with a
Global aru of at least aru.

Each stable server in S has a Global aru of aru′,
with aru′ ≥ aru. Upon receiving the GLOBAL-RECON
message from R, a stable server uses the THROTTLE-
SEND procedure to send all Globally Ordered Update
messages in the difference to the requester (Figure A-

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 39

23, line D16). Since the system is stable, each Glob-
ally Ordered Update will arrive at the requester in
bounded time, and the requester will increase its
Global aru to at least aru.

We now prove Claim B.1:

Proof: Assume, without loss of generality, that
stable site S has a stable server with a Global aru of
max stable seq. By Lemma B.1, all stable servers
in S eventually set their Global aru to at least
max stable seq. Since no stable server sets its
Global aru beyond this sequence number (by the
definition of max stable seq), the stable servers in
S set their Global aru to exactly max stable seq. By
Lemma B.2, at least one stable server in each stable site
eventually sets its Global aru to at least max stable seq.
Using similar logic as above, these stable servers set
their Global aru variables to exactly max stable seq. By
applying Lemma B.1 in each stable site and using the
same logic as above, all stable servers in all stable sites
eventually set their Global aru to max stable seq.

We now proceed to prove the second main claim,
which shows that, once the above reconciliation has
taken place, the system will reach a state in which
a stable representative of a stable leader site can
complete the GLOBAL-VIEW-CHANGE protocol, which is
a precondition for globally ordering a new update. This
notion is encapsulated in the following claim:

Claim B.2: If no global progress occurs, and the
system is stable with respect to time T , then there exists
an infinite set of global views gvi, each with stable
leader site Si, in which the first stable representative
in Si serving for at least a local timeout period can
complete GLOBAL-VIEW-CHANGE.

Since completing GLOBAL-VIEW-CHANGE requires all
stable servers to be in the same global view for some
amount of time, we begin by proving several claims
about the GLOBAL-LEADER-ELECTION protocol. Before
proceeding, we prove the following claim relating
to the THRESHOLD-SIGN protocol, which is used by
GLOBAL-LEADER-ELECTION:

Claim B.3: If all stable servers in a stable site invoke
THRESHOLD-SIGN on the same message, m, then
THRESHOLD-SIGN returns a correctly threshold-signed
message m at all stable servers in the site within some
finite time, Δsign.

To prove Claim B.3, we use the following lemma:

Lemma B.3: If all stable servers in a stable site invoke
THRESHOLD-SIGN on the same message, m, then all
stable servers will receive at least 2f + 1 correct partial
signature shares for m within a bounded time.

Proof: When a correct server invokes THRESHOLD-
SIGN on a message, m, it generates a partial signature
for m and sends this to all servers in its site (Figure
A-9, Block A). A correct server uses only its threshold
key share and a deterministic algorithm to generate a
partial signature on m. The algorithm is guaranteed to
complete in a bounded time. Since the site is stable, there
are at least 2f + 1 correct servers that are connected to
each other in the site. Therefore, if the stable servers
invoke THRESHOLD-SIGN on m, then each stable server
will receive at least 2f + 1 partial signatures on m from
correct servers.

We can now prove Claim B.3.

Proof: A correct server combines 2f+1 correct partial
signatures to generate a threshold signature on m. From
Lemma B.3, a correct server will receive 2f + 1 correct
partial signatures on m.

We now need to show that a correct server will even-
tually combine the correct signature shares. Malicious
servers can contribute an incorrect signature share. If the
correct server combines a set of 2f + 1 signature shares,
and one or more of the signature shares are incorrect,
the resulting threshold signature is also incorrect.

When a correct server receives a set of 2f +1 signature
shares, it will combine this set and test to see if the
resulting signature verifies (Figure A-9, Block B). If the
signature verifies, the server will return message m with
a correct threshold signature (line B4). If the signature
does not verify, then THRESHOLD-SIGN does not return
message m with a threshold signature. On lines B6-B11,
the correct server checks each partial signature that it has
received from other servers. If any partial signature does
not verify, it removes the incorrect partial signature from
its data structure and adds the server that sent the partial
signature to a list of corrupted servers. A correct server
will drop any message sent by a server in the corrupted
server list (Figure A-6, lines A10-A11). Since there are
at most f malicious servers in the site, these servers
can prevent a correct server from correctly combining
the 2f + 1 correct partial signatures on m at most
f times. Therefore, after a maximum of f verification
failures on line B3, there will be a verification success
and THRESHOLD-SIGN will return a correctly threshold
signed message m at all correct servers, proving the
claim.

We now can prove claims about GLOBAL-LEADER-
ELECTION. We first introduce the following terminology
used in the proof:

DEFINITION B.2: We say that a server preinstalls
global view gv when it collects a set of Global VC(gvi)
messages from a majority of sites, where gvi ≥ gv.

DEFINITION B.3: A global preinstall proof for global

40 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, MONTH-MONTH 200X.

view gv is a set of Global VC(gvi) messages from a
majority of sites where gvi ≥ gv. The set of messages is
proof that gv preinstalled.

Our goal is to prove the following claim:

Claim B.4: If global progress does not occur, and
the system is stable with respect to time T , then all
stable servers will preinstall the same global view, gv,
in a finite time. Subsequently, all stable servers will:
(1) preinstall all consecutive global views above gv
within one wide area message delay of each other and
(2) remain in each global view for at least one global
timeout period.

To prove Claim B.4, we maintain the following
invariant and show that it always holds:

INVARIANT B.1: If a correct server, s, has Global view
gv, then it is in one of the two following states:

1) Global T is running and s has global preinstall
proof for gv.

2) Global T is not running and s has global preinstall
proof for gv − 1.

Lemma B.4: Invariant B.1 always holds.

Proof: We show that Invariant B.1 holds using an
argument based on a state machine, SM . SM has the
two states listed in Invariant B.1.

We first show that a correct server starts in state (1).
When a correct server starts, its Global view is initialized
to 0, it has an a priori global preinstall proof for 0, and its
Global T timer is running. Therefore, Invariant B.1 holds
immediately after the system is initialized, and the server
is in state (1).

We now show that a correct server can only transition
between these two states. SM has the following two
types of state transitions. These transitions are the only
events where (1) the state of Global T can change (from
running to stopped or from stopped to running), (2) the
value of Global T changes, or (3) the value of global
preinstall proof changes. In our pseudocode, the state
transitions occur across multiple lines and functions.
However, they are atomic events that always occur
together, and we treat them as such.

• Transition (1): A server can transition from state
(1) to state (2) only when Global T expires and it
increments its global view by one.

• Transition (2): A server can transition from state
(2) to state (1) or from state (1) to state (1) when
it increases its global preinstall proof and starts
Global T.

We now show that if Invariant B.1 holds before a state
transition, it will hold after a state transition.

We first consider transition (1). We assume that Invari-
ant B.1 holds immediately before the transition. Before

transition (1), SM is in state (1) and Global view is equal
to Global preinstalled view, and Global T is running.
After transition (1), SM is in state (2) and Global view
is equal to Global preinstalled view + 1, and Global T
is stopped. Therefore, after the state transition, Invariant
B.1 holds. This transition corresponds to Figure A-14,
lines A1 and A2. On line A1, Global T expires and stops.
On line A2, Global view is incremented by one. SM
cannot transition back to state (1) until a transition (2)
occurs.

We next consider transition (2). We assume that Invari-
ant B.1 holds immediately before the transition. Before
transition (2) SM can be in either state (1) or state (2).
We now prove that the invariant holds immediately after
transition (2) if it occurs from either state (1) or state (2).

Let gv be the value of Global view before the tran-
sition. If SM is in state (1) before transition (2), then
global preinstall proof is gv, and Global T is running.
If SM is in state (2) before transition (2), then global
preinstall proof is gv − 1, and Global T is stopped. In
either case, the following is true before the transition:
global preinstalled proof ≥ gv − 1. Transition (2) occurs
only when global preinstall proof increases (Figure A-
14, block E). Line E6 of Figure A-14 is the only line
in the pseudocode where Global T is started after ini-
tialization, and this line is triggered upon increasing
global preinstall proof. Let global preinstall proof equal
gp after transition (2) and Global view be gv′. Since
the global preinstall proof must be greater than what
it was before the transition, gp ≥ gv. On lines E5 - E7
of Figure A-4, when global preinstall proof is increased,
Global view is increased to global preinstall proof if
Global view < global preinstall proof. Thus, gv′ ≥ gp.
Finally, gv′ ≥ gv, because Global view either remained
the same or increase.

We now must examine two different cases. First,
when gv′ > gv, the Global view was increased to gp,
and, therefore, gv′ = gp. Second, when gv′ = gv (i.e.,
Global view was not increased), then, from gp ≥ gv and
gv′ ≥ gp, gv′ = gp. In either case, therefore, Invariant B.1
holds after transition (2).

We have shown that Invariant B.1 holds when a server
starts and that it holds after each state transition.

We now prove a claim about RELIABLE-SEND-TO-
ALL-SITES that we use to prove Claim B.4:

Claim B.5: If the system is stable with respect to time
T , then if a stable server invokes RELIABLE-SEND-TO-
ALL-SITES on message m, then all stable servers will
receive m.

Proof: When a stable server invokes RELIABLE-SEND-
TO-ALL-SITES on message m, it first creates a Reli-
able Message(m) message and sends it to all of the
servers in its site, S, (Figure A-24, lines A2 and A3).
Therefore, all stable servers in S will receive message m
embedded within the Reliable Message.

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 41

The server that invoked RELIABLE-SEND-TO-ALL-SITES
calls SendToPeers on m (line A4). All other servers call
SendToPeers(m) when they receive Reliable Message(m)
(line B2). Therefore, all stable servers in S will call
SendToPeers(m). This function first checks to see if the
server that called it has a Server id between 1 and 2f +1
(line D1). Recall that servers in each site are uniquely
numbered with integers from 1 to 3f + 1. If a server is
one of the 2f + 1 servers with the lowest values, it will
send its message to all servers in all other sites that have
a Server id equal to its server id (lines D2-D4).

Therefore, if we consider S and any other stable site
S′, then message m is sent across 2f + 1 links, where
the 4f + 2 servers serving as endpoints on these links
are unique. A link passes m from site S to S′ if both
endpoints are stable servers. There are at most 2f servers
that are not stable in the two sites. Therefore, if each of
these non-stable servers blocks one link, there is still one
link with stable servers at both endpoints. Thus, message
m will pass from S to at least one stable server in all
other sites. When a server on the receiving endpoint
receives m (lines C1-C2), it sends m to all servers in its
site. Therefore, we have proved that if any stable server
in a stable system invokes RELIABLE-SEND-TO-ALL-SITES
on m, all stable servers in all stable sites will receive m.

We now show that if all stable servers increase their
Global view to gv, then all stable servers will preinstall
global view gv.

Lemma B.5: If the system is stable with respect to
time T , then if, at a time after T , all stable servers
increase their Global view variables to gv, all stable
servers will preinstall global view gv.

Proof: We first show that if any stable server in-
creases its global view to gv because it receives global
preinstall proof for gv, then all stable servers will pre-
install gv. When a stable server increases its global
preinstall proof to gv, it reliably sends this proof to all
servers (Figure A-14, lines E4 and E5) By Claim B.5, all
stable servers receive this proof, apply it, and preinstall
global view gv.

We now show that if all stable servers increase their
global views to gv without first receiving global prein-
stall proof for gv, all stable servers will preinstall gv. A
correct server can increase its Global view to gv without
having preinstall proof for gv in only one place in the
pseudocode (Figure A-14, line A2). If a stable server
executes this line, then it also constructs an unsigned
Global VC(gv) message and invokes THRESHOLD-SIGN
on this message (lines A4-A5).

From Claim B.3, if all stable servers in a stable
site invoke THRESHOLD-SIGN on Global VC(gv), then a
correctly threshold signed Global VC(gv) message will
be returned to all stable servers in this site. When
THRESHOLD-SIGN returns a Global VC message to a

stable server, this server reliably sends it to all other
sites. By Claim B.5, all stable servers will receive the
Global VC(gv) message. Since we assume all stable
servers in all sites increase their global views to gv, all
stable servers will receive a Global VC(gv) message from
a majority of sites.

We next prove that soon after the system becomes
stable, all stable servers preinstall the same global view
gv. We also show that there can be no global preinstall
proof for a global view above gv:

Lemma B.6: If global progress does not occur, and the
system is stable with respect to time T , then all stable
servers will preinstall the same global view gv before
time T + Δ, where gv is equal to the the maximum
global preinstall proof in the system when the stable
servers first preinstall gv.

Proof: Let smax be the stable server with the high-
est preinstalled global view, gpmax, at time T , and let
gpsysmax be the highest preinstalled view in the system
at time T . We first show that gpmax + 1 ≥ gpsysmax.
Second, we show that all stable servers will preinstall
gpmax. Then we show that the Global T timers will
expire at all stable servers, and they will increase their
global view to gpmax + 1. Next, we show that when
all stable servers move to global view gpmax + 1, each
site will create a threshold signed Global VC(gpmax +1)
message, and all stables servers will receive enough
Global VC messages to preinstall gpmax + 1.

In order for gpsysmax to have been preinstalled,
some server in the system must have collected
Global VC(gpsysmax) messages from a majority of sites.
Therefore, at least f + 1 stable servers must have had
global views for gpsysmax, because they must have in-
voked THRESHOLD-SIGN on Global VC(gpsysmax). From
Invariant B.1, if a correct server is in gpsysmax, it must
have global preinstall proof for at least gpsysmax − 1.
Therefore, gpmax + 1 ≥ gpsysmax.

When smax preinstalls gpmax, it reliably sends
global preinstall proof for gpmax to all stable sites
(via the RELIABLE-SEND-TO-ALL-SITES protocol). By
Claim B.5, all stable servers will receive and ap-
ply Global Preinstall Proof(gpmax) and increase their
Global view variables to gpmax. Therefore, within ap-
proximately one widea-area message delay of T , all
stable servers will preinstall gpmax. By Invariant B.1, all
stable servers must have global view gpmax or gpmax+1.
Any stable server with Global view gpmax+1 did not yet
preinstall this global view. Therefore, its timer is stopped
as described in the proof of Lemma B.4, and it will not
increase its view again until it receives proof for a view
higher than gpmax.

We now need to show that all stable servers with
Global view gpmax will move to Global view gpmax +1.
All of the servers in gpmax have running timers be-
cause their global preinstall proof = Global view. The

42 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, MONTH-MONTH 200X.

Global T timer is reset in only two places in the pseu-
docode. The first is on line E6 of Figure A-14. This
code is not called unless a server increases its global
preinstall proof, in which case it would also increase its
Global view to gpmax+1. The second case occurs when a
server executes a Globally Ordered Update (Figure A-
4, line C8), which cannot happen because we assume
that global progress does not occur. Therefore, if a stable
server that has view gpmax does not increase its view
because it receives preinstall proof for gpmax + 1, its
Global T timer will expire and it will increment its global
view to gpmax + 1.

We have shown that if global progress does not occur,
and the system is stable with respect to time T , then
all stable servers will move to the same global view,
gpmax + 1. A server either moves to this view because
it has preinstall proof for gpmax + 1 or it increments its
global view to gpmax+1. If any server has preinstall proof
for gpmax, it sends this proof to all stable servers using
RELIABLE-SEND-TO-ALL-SITES and all stable servers will
preinstall gpmax +1. By Lemma B.5, if none of the stable
servers have preinstall proof for gpmax+1 and they have
incremented their global view to gpmax+1, then all stable
servers will preinstall gpmax + 1.

We conclude by showing that time Δ is finite. As
soon as the system becomes stable, the server with the
highest global preinstall proof, gpmax, sends this proof to
all stable servers as described above. It reaches them in
one wide area message delay. After at most one global
timeout, the stable servers will increment their global
views because their Global T timeout will expire. At this
point, the stable servers will invoke THRESHOLD-SIGN,
Global VC messages will be returned at each stable site,
and the stable servers in each site will reliably send
their Global VC messages to all stable servers. These
messages will arrive in approximately one wide area
delay, and all servers will install the same view, gpmax+1.

We now prove the last lemma necessary to prove
Claim B.4:

Lemma B.7: If the system is stable with respect to
time T , then if all stable servers are in global view gv,
the Global T timers of at least f + 1 stable servers must
timeout before the global preinstall proof for gv + 1 can
be generated.

Proof: A stable system has a majority of sites each
with at least 2f + 1 stable servers. If all of the servers in
all non-stable sites generate Global VC(gv+1) messages,
the set of existing messages does not constitute global
preinstall proof for gv + 1. One of the stable sites must
contribute a Global VC(gv+1) message. In order for this
to occur, 2f + 1 servers at one of the stable sites must
invoke THRESHOLD-SIGN on Global VC(gv + 1), which
implies f +1 stable servers had global view gv+1. Since
global preinstall proof could not have been generated

without the Global VC message from their site, Global T
at these servers must have expired.

We now use Lemmas B.5, B.6, and B.7 to prove Claim
B.4:

Proof: By Lemma B.6, all servers will preinstall the
same view, gv, and the highest global preinstall proof in
the system is gv. If global progress does not occur, then
the Global T timer at all stable servers will eventually
expire. When this occurs, all stable servers will increase
their global view to gv + 1. By Lemma B.5, all stable
servers will preinstall gv + 1. By Lemma B.5, Global T
must have expired at at least f + 1 stable servers. We
have shown that if all stable servers are in the same
global view, they will remain in this view until at least
f + 1 stable servers Global T timer expires, and they
will definitely preinstall the next view when all stable
servers’ Global T timer expires.

When the first stable server preinstalls global view
gv+1, it reliably sends global preinstall proof gv+1 to all
stable servers (Figure A-14, line E4). Therefore, all stable
servers will receive global preinstall proof for gv + 1
at approximately the same time (within approximately
one wide area message delay). The stable servers will
reset their Global T timers and start them when they
preinstall. At this point, no server can preinstall the next
global view until there is a global timeout at at least
f+1 stable servers. If the servers don’t preinstall the next
global view before, they will do so when there is a global
timeout at all stable servers. Then the process repeats.
The stable servers preinstall all consecutive global views
and remain in them for a global timeout period.

We now prove a similar claim about the local
representative election protocol. The protocol is
embedded within the LOCAL-VIEW-CHANGE protocol,
and it is responsible for the way in which stable servers
within a site synchronize their Local view variable.

Claim B.6: If global progress does not occur, and the
system is stable with respect to time T , then all stable
servers in a stable site will preinstall the same local
view, lv, in a finite time. Subsequently, all stable servers
in the site will: (1) preinstall all consecutive local views
above lv within one local area message delay of each
other and (2) remain in each local view for at least one
local timeout period.

To prove Claim B.6, we use a state machine based
argument to show that the following invariant holds:

INVARIANT B.2: If a correct server, s, has Local view
lv, then it is in one of the following two states:

1) Local T is running and s has local preinstall proof
lv

2) Local T is not running and s has local preinstall
proof lv − 1.

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 43

Lemma B.8: Invariant B.2 always holds.

Proof: When a correct server starts, Local T is
started, Local view is set to 0, and the server has an
a priori proof (New Rep message) for local view 0.
Therefore, it is in state (1).

A server can transition from one state to another only
in the following two cases. These transitions are the only
times where a server (1) increases its local preinstall
proof, (2) increases its Local view, or (3) starts or stops
Local T.

• Transition (1): A server can transition from state
(1) to state (2) only when Local T expires and it
increments its local view by one.

• Transition (2): A server can transition from state (2)
to state (1) or from state (1) to state (1) when it
increases its local preinstall proof and starts Local T.

We now show that if Invariant B.2 holds before a state
transition, it will hold after a state transition.

We first consider transition (1). We assume that Invari-
ant B.2 holds immediately before the transition. Before
transition (1), the server is in state (1) and Local view
is equal to local preinstalled view, and Local T is run-
ning. After transition (1), the server is in state (2) and
Local view is equal to local preinstalled view + 1, and
Local T is stopped. Therefore, after the state transition,
Invariant B.2 holds. This transition corresponds to lines
A1 and A2 in Figure A-13. On line A1, Local T expires
and stops. On line A2, Local view is incremented by one.
The server cannot transition back to state (1) until there
is a transition (2).

We next consider transition (2). We assume that Invari-
ant B.2 holds immediately before the transition. Before
transition (2) the server can be in either state (1) or state
(2). We now prove that the invariant holds immediately
after transition (2) if it occurs from either state (1) or state
(2).

Let lv be the value of Local view before transition.
If the server is in state (1) before transition (2), then
local preinstall proof is lv, and Local T is running. If
the server is in state (2) before transition (2), then local
preinstall proof is lv−1, and Local T is stopped. In either
case, the following is true before the transition: local
preinstall proof ≥ gv−1. Transition (2) occurs only when
local preinstall proof increases (Figure A-13, block D).
Line D4 of the LOCAL-VIEW-CHANGE protocol is the only
line in the pseudocode where Local T is started after ini-
tialization, and this line is triggered only upon increasing
local preinstall proof. Let local preinstall proof equal lp
after transition (2) and Local view be lv′. Since the local
preinstall proof must be greater than what it was before
the transition, lp ≥ lv. On lines E2-E4 of Figure A-3,
when local preinstall proof is increased, Local view is
increased to local preinstall proof if Local view < local
preinstall proof. Thus, lv′ ≥ lp. Finally, lv′ ≥ lv, because
Local view either remained the same or increased.

We now must examine two different cases. First, when
lv′ > lv, Local view was increased to lp, and, therefore,
lv′ = lp. Second, when lv′ = lv (i.e., Local view was not
increased), then, from lp ≥ lv and lv′ ≥ lp and simple
substituition, lv′ = lp′. In either case, therefore, Invariant
B.2 holds after transition (2).

We have shown that Invariant B.2 holds when a
server starts and that it holds after each state transition,
completing the proof.

We can now prove Claim B.6.

Proof: Let smax be the stable server with the highest
local preinstalled view, lpmax, in stable site S. Let lvmax

be server smax’s local view. The local preinstall proof is
a New Rep(lpmax) message threshold signed by site S.
Server smax sends its local preinstall proof to all other
servers in site S when it increases its local preinstall
proof (Figure A-13, line D3). Therefore, all stable servers
in site S will receive the New Rep message and prein-
stall lpmax.

From Invariant B.2, lpmax = lvmax−1 or lpmax = lvmax.
Therefore, all stable servers are within one local view of
each other. If lpmax = lvmax, then all servers have the
same local view and their Local T timers are running. If
not, then there are two cases we must consider.

1) Local T will expire at the servers with local view
lpmax and they will increment their local view to
lvmax (Figure A-13, line D3). Therefore, all stable
servers will increment their local views to lvmax,
and invoke THRESHOLD-SIGN on New Rep(lvmax)
(Figure A-13, line A5). By Claim B.3, a correctly
threshold signed New Rep(lvmax) message will
be returned to all stable servers. They will in-
crease their local preinstall proof to lvmax, send the
New Rep message to all other servers, and start
their Local T timers.

2) The servers with local view lpmax will receive a
local preinstall proof higher than lpmax. In this
case, the servers increase their local view to the
value of the preinstall proof they received, send
the preinstall proof, and start their Local T timers.

We have shown that, in all cases, all stable servers will
preinstall the same local view and that their local timers
will be running. Now, we need to show that these stable
servers will remain in the same local view for one local
timeout, and then all preinstall the next local view.

At least 2f + 1 servers must first be in a local view
before a New Rep message will be created for that
view. Therefore, the f malicious servers cannot create a
preinstall proof by themselves. When any stable server
increases its local preinstall proof to the highest in the
system, it will send this proof to all other stable servers.
These servers will adopt this preinstall proof and start
their timers. Thus, all of their Local T timers will start
at approximately the same time. At least f + 1 stable
servers must timeout before a higher preinstall proof can
be created. Therefore, the stable servers will stay in the

44 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, MONTH-MONTH 200X.

same local view for a local timeout period. Since all sta-
ble servers start Local T at about the same time (within a
local area message delay), they will all timeout at about
the same time. At that time, they all invoke THRESHOLD-
SIGN and a New Rep message will be created for the
next view. At this point, the first server to increase its
preinstall proof sends this proof to all stable servers.
They start their Local T timers, and the process repeats.
Each consecutive local view is guaranteed to preinstall,
and the stable servers will remain in the same view for
a local timeout.

We now establish relationships between our timeouts.
Each server has two timers, Global T and Local T, and
a corresponding global and local timeout period for
each timer. The servers in the leader site have a longer
local timeout than the servers in the non-leader site
so that a correct representative in the leader site can
communicate with at least one correct representative in
all stable non-leader sites. The following claim specifies
the values of the timeouts relative to each other.

Claim B.7: All correct servers with the same global
view, gv, have the following timeouts:

1) The local timeout at servers in the non-leader sites
is local to nls

2) The local timeout at the servers in the leader site
is local to ls = (f + 2)local to nls

3) The global timeout is global to = (f +
3)local to ls = K ∗ 2�Global view/N

Proof: The timeouts are set by functions specified
in Figure A-15. The global timeout global to is a de-
terministic function of the global view, global to = K ∗
2�Global view/N, where K is the minimum global timeout
and N is the number of sites. Therefore, all servers in
the same global view will compute the same global
timeout (line C1). The RESET-GLOBAL-TIMER function
sets the value of Global T to global to. The RESET-
LOCAL-TIMER function sets the value of Local T de-
pending on whether the server is in the leader site. If
the server is in the leader site, the Local T timer is
set to local to ls = (global to/(f + 3)) (line B2). If the
server is not in the leader site, the Local T timer is set
local to nls = local to ls/(f+2) (line B4). Therefore, the
above ratios hold for all servers in the same global view.

We now prove that each time a site becomes the
leader site in a new global view, correct representatives
in this site will be able to communicate with at least
one correct representative in all other sites. This follows
from the timeout relationships in Claim B.7. Moreover,
we show that each time a site becomes the leader, it
will have more time to communicate with each correct
representative. Intuitively, this claim follows from the
relative rates at which the coordinators rotate at the
leader and non-leader sites.

Claim B.8: If LS is the leader site in global
views gv and gv′ with gv > gv′, then any stable
representative elected in gv can communicate with a
stable representative at all stable non-leader sites for
time Δgv , and any stable representative elected in gv′

can communicate with a stable representative at all
stable non-leader sites for time Δgv′ and Δgv ≥ 2 ∗Δgv′ .

Proof: From Claim B.6, if no global progress occurs,
(1) local views will be installed consecutively, and (2)
the servers will remain in the same local view for one
local timeout. Therefore, any correct representative at the
leader site will reign for one local timeout at the leader
site, local to ls. Similarly, any correct representative at
a non-leader site will reign for approximately one local
timeout at a non-leader site, local to nls.

From Claim B.7, the local timeout at the leader site
is f + 2 times the local timeout at the non-leader site
(local to ls = (f + 2)local to nls). If stable server r is
representative for local to ls, then, at each leader site,
there will be at least f +1 servers that are representative
for time local to nls during the time that r is represen-
tative. Since the representative has a Server id equal to
Local view mod(3f + 1), a server can never be elected
representative twice during f+1 consecutive local views.
It follows that a stable representative in the leader site
can communicate with f + 1 different servers for time
period local to ls. Since there are at most f servers that
are not stable, at least one of the f + 1 servers must be
stable.

From Claim B.7, the global timeout doubles every N
consecutive global views, where N is the number of sites.
The local timeouts are a constant fraction of a global
timeout, and, therefore, they grow at the same rate as
the global timeout. Since the leader site has Site id =
Global view modN , a leader site is elected exactly once
every N consecutive global views. Therefore, each time
a site becomes the leader, the local and global timeouts
double.

Claim B.9: If global progress does not occur and the
system is stable with respect to time T , then in any
global view gv that begins after time T , there will be at
least two stable representatives in the leader site that
are each leaders for a local timeout at the leader site,
local to ls.

Proof: From Claim B.6, if no global progress occurs,
(1) local views will be installed consecutively, and (2) the
servers will remain in the same local view for one local
timeout. From Claim B.4, if no global progress occurs, the
servers in the same global view will remain in this global
view for one global timeout, global to. From Claim B.7,
global to = (f +3)local to ls. Therefore, during the time
when all stable servers are in global view gv, there will
be f +2 representatives in the leader site that each serve
for local to ls. We say that these servers have complete

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 45

reigns in gv. Since the representative has a Server id
equal to Local view mod(3f + 1), a server can never
be elected representative twice during f + 2 consecutive
local views. There are at most f servers in a stable site
that are not stable, therefore at least two of the f + 2
servers that have complete reigns in gv will be stable.

We now proceed with our main argument for proving
Claim B.2, which will show that a stable server will be
able to complete the GLOBAL-VIEW-CHANGE protocol.
To complete GLOBAL-VIEW-CHANGE in a global view gv,
a stable representative must coordinate the construction
of an Aru Message, send the Aru Message to the other
sites, and collect Global Constraint messages from a
majority of sites. We leverage the properties of the global
and local timeouts to show that, as the stable sites move
through global views together, a stable representative
of the leader site will eventually remain in power
long enough to complete the protocol, provided each
component of the protocol completes in finite time. This
intuition is encapsulated in the following lemma:

Lemma B.9: If global progress does not occur and
the system is stable with respect to time T , then there
exists an infinite set of global views gvi, each with an
associated local view lvi and a stable leader site Si, in
which, if CONSTRUCT-ARU and CONSTRUCT-GLOBAL-
CONSTRAINT complete in bounded finite times, then if
the first stable representative of Si serving for at least a
local timeout period invokes GLOBAL-VIEW-CHANGE, it
will complete the protocol in (gvi, lvi).

Proof: By Claim B.4, if the system is stable and no
global progress is made, all stable servers move together
through all (consecutive) global views gv above some
initial synchronization view, and they remain in gv for
at least one global timeout period, which increases by
at least a factor of two every N global view changes.
Since the stable sites preinstall consecutive global views,
an infinite number of stable leader sites will be elected.
By Claim B.9, each such stable leader site elects three
stable representatives before the Global T timer of any
stable server expires, two of which remain in power
for at least a local timeout period before any stable
server in S expires its Local T timeout. We now show
that we can continue to increase this timeout period
(by increasing the value of gv) until, if CONSTRUCT-
ARU and CONSTRUCT-GLOBAL-CONSTRAINT complete in
bounded finite times Δaru and Δgc, respectively, the
representative will complete GLOBAL-VIEW-CHANGE.

A stable representative invokes CONSTRUCT-ARU after
invoking the GLOBAL-VIEW-CHANGE protocol (Figure A-
16, line A2), which occurs either after preinstalling the
global view (Figure A-14, line E8) or after completing a
local view change when not globally constrained (Figure
A-13, line D8). Since the duration of the local timeout
period local to ls increases by at least a factor of two
every N global view changes, there will be a global view

gv in which the local timeout period is greater than Δaru,
at which point the stable representative has enough time
to construct the Aru Message.

By Claim B.8, if no global progress occurs, then a stable
representative of the leader site can communicate with
a stable representative at each stable non-leader site in
a global view gv for some amount of time, Δgv , that
increases by at least a factor of two every N global
view changes. The stable representative of the leader site
receives a New Rep message containing the identity of
the new site representative from each stable site roughly
one wide area message delay after the non-leader site
representative is elected. Since Δgc is finite, there is a
global view sufficiently large such that (1) the leader site
representative can send the Aru Message it constructed
to each non-leader site representative, the identity of
which it learns from the New Rep message, (2) each
non-leader site representative can complete CONSTRUCT-
GLOBAL-CONSTRAINT, and (3) the leader site represen-
tative can collect Global Constraint messages from a
majority of sites. We can apply the same logic to each
subsequent global view gv′ with a stable leader site.

We call the set of views for which Lemma B.9 holds
the completion views. Intuitively, a completion view is a
view (gv, lv) in which the timeouts are large enough
such that, if CONSTRUCT-ARU and CONSTRUCT-GLOBAL-
CONSTRAINT complete in some bounded finite amounts
of time, the stable representative of the leader site S of gv
(which is the first stable representative of S serving for at
least a local timeout period) will complete the GLOBAL-
VIEW-CHANGE protocol.

Given Lemma B.9, it just remains to show that
there exists a completion view in which CONSTRUCT-
ARU and CONSTRUCT-GLOBAL-CONSTRAINT terminate
in bounded finite time. We use Claim B.1 to lever-
age the fact that all stable servers eventually reconcile
their Global History data structures to max stable seq
to bound the amount of work required by each protocol.
Since there are an infinite number of completion views,
we consider those completion views in which this rec-
onciliation has already completed.

We first show that there is a bound on the size of the
Global Server State messages used in CONSTRUCT-ARU
and CONSTRUCT-GLOBAL-CONSTRAINT.

Lemma B.10: If all stable servers have a
Global aru of max stable seq, then no server
can have a Prepare Certificate, Proposal, or
Globally Ordered Update for any sequence number
greater than (max stable seq + 2 ∗ W).

Proof: Since obtaining a Globally Ordered Update
requires a Proposal, and generating a Proposal requires
collecting a Prepare Certificate, we assume that a Pre-
pare Certificate with a sequence number greater than
(max stable seq + 2 ∗ W) was generated and show that
this leads to a contradiction.

46 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, MONTH-MONTH 200X.

If any server collects a Prepare Certificate for a se-
quence number seq greater than (max stable seq+2∗W),
then it collects a Pre-Prepare message and 2f Prepare
messages for (max stable seq+2∗W). This implies that
at least f + 1 correct servers sent either a Pre-Prepare
or a Prepare. A correct representative only sends a Pre-
Prepare message for seq if its Global aru is at least
(seq − W) (Figure A-11, line A3), and a correct server
only sends a Prepare message if its Global aru is at least
(seq −W) (Figure A-8, A23). Thus, at least f + 1 correct
servers had a Global aru of at least (seq − W).

For this to occur, these f + 1 correct servers ob-
tained Globally Ordered Updates for those sequence
numbers up to and including (seq − W). To obtain a
Globally Ordered Update, a server collects a Proposal
message and �S/2� corresponding Accept messages. To
construct a Proposal for (seq −W), at least f + 1 correct
servers in the leader site had a Global aru of at least
(seq − 2W) > max stable seq. Similarly, to construct an
Accept message, at least f + 1 correct servers in a non-
leader site contributed a Partial sig message. Thus, there
exists a majority of sites, each with at least f + 1 correct
servers with a Global aru greater than max stable seq.

Since any two majorities intersect, one of these sites
is a stable site. Thus, there exists a stable site with
some stable server with a Global aru greater than
max stable seq, which contradicts the definition of
max stable seq.

Lemma B.11: If all stable servers have a Global aru
of max stable seq, then if a stable representative
of the leader site invokes CONSTRUCT-ARU, or if a
stable server in a non-leader site invokes CONSTRUCT-
GLOBAL-CONSTRAINT with an Aru Message containing
a sequence number at least max stable seq, then any
valid Global Server State message will contain at most
2 ∗ W entries.

Proof: A stable server invokes CONSTRUCT-ARU with
an invocation sequence number of max stable seq. By
Lemma B.10, no server can have a Prepare Certifi-
cate, Proposal, or Globally Ordered Update for any se-
quence number greater than (max stable seq + 2 ∗ W).
Since these are the only entries reported in a valid
Global Server State message (Figure A-20, Block B), the
lemma holds. We use the same logic as above in the case
of CONSTRUCT-GLOBAL-CONSTRAINT.

The next two lemmas show that CONSTRUCT-ARU
and CONSTRUCT-GLOBAL-CONSTRAINT will complete in
bounded finite time.

Lemma B.12: If the system is stable with respect to
time T and no global progress is made, then there
exists an infinite set of views (gvi, lvi) in which a run of
CONSTRUCT-ARU invoked by the stable representative
of the leader site will complete in some bounded finite
time, Δaru.

Proof: By Claim B.1, if no global progress is
made, then all stable servers eventually reconcile their
Global aru to max stable seq. We consider those com-
pletion views in which this reconciliation has already
completed.

The representative of the completion view invokes
CONSTRUCT-ARU upon completing GLOBAL-LEADER-
ELECTION (Figure A-16, line A2). It sends a Re-
quest Global State message to all local servers contain-
ing a sequence number reflecting its current Global aru
value. Since all stable servers are reconciled up to
max stable seq, this sequence number is equal to
max stable seq. Since the leader site is stable, all stable
servers receive the Request Global State message within
one local message delay.

When a stable server receives the Re-
quest Global State message, it immediately sends
a Global Server State message (Figure A-18, lines
B5-B7), because it has a Global aru of max stable seq.
By Lemma B.11, any valid Global Server State message
can contain entries for at most 2 ∗W sequence numbers.
We show below in Claim B.11 that all correct servers
have contiguous entries above the invocation sequence
number in their Global History data structures. From
Figure A-20 Block B, the Global Server State message
from a correct server will contain contiguous entries.
Since the site is stable, the representative collects
valid Global Server State messages from at least
2f + 1 servers, bundles them together, and sends the
Global Collected Servers State message to all local
servers (Figure A-18, line C3).

Since the representative is stable, and all stable servers
have a Global aru of max stable seq (which is equal to
the invocation sequence number), all stable servers meet
the conditionals at Figure A-18, lines D2 and D3. They do
not see a conflict at Figure A-7, line F4, because the rep-
resentative only collects Global Server State messages
that are contiguous. They construct the union message
by completing Compute Global Union (line D4), and
invoke THRESHOLD-SIGN on each Prepare Certificate in
the union. Since there are a finite number of entries in the
union, there are a finite number of Prepare Certificates.
By Lemma B.3, all stable servers convert the Prepare
Certificates into Proposals and invoke THRESHOLD-SIGN
on the union (line F2). By Lemma B.3, all stable servers
generate the Global Constraint message (line G1) and
invoke THRESHOLD-SIGN on the extracted union aru
(line G4). By Lemma B.3, all stable servers generate the
Aru Message and complete the protocol.

Since gvi can be arbitrarily high, with the timeout
period increasing by at least a factor of two every N
global view changes, there will eventually be enough
time to complete the bounded amount of computation
and communication in the protocol. We apply the same
logic to all subsequent global views with a stable leader
site to obtain the infinite set.

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 47

Lemma B.13: Let A be an Aru Message containing
a sequence number of max stable seq. If the system is
stable with respect to time T and no global progress is
made, then there exists an infinite set of views (gvi, lvi)
in which a run of CONSTRUCT-GLOBAL-CONSTRAINT
invoked by a stable server in local view lvi, where the
representative of lvi is stable, in a non-leader site with
argument A, will complete in some bounded finite time,
Δgc.

Proof: By Claim B.1, if no global progress is
made, then all stable servers eventually reconcile their
Global aru to max stable seq. We consider those com-
pletion views in which this reconciliation has already
occurred.

The Aru Message A has a value of at max stable seq.
Since the representative of lv′ is stable, it sends A to all
servers in its site. All stable servers receive A within one
local message delay.

All stable servers invoke CONSTRUCT-GLOBAL-
CONSTRAINT upon receiving A and send
Global Server State messages to the representative.
By Lemma B.11, the Global Server State messages
contain entries for at most 2 ∗ W sequence numbers.
We show below in Claim B.11 that all correct servers
have contiguous entries above the invocation sequence
number in their Global History data structures.
From Figure A-20 Block B, the Global Server State
message from a correct server will contain contiguous
entries. The representative will receive at least
2f + 1 valid Global Server State messages, since
all messages sent by stable servers will be valid. The
representative bundles up the messages and sends a
Global Collected Servers State message (Figure A-19,
line B3).

All stable servers receive the
Global Collected Servers State message within one
local message delay. The message will meet the
conditional at line C2, because it was sent by a stable
representative. They do not see a conflict at Figure
A-7, line F4, because the representative only collects
Global Server State messages that are contiguous.
All stable servers construct the union message by
completing Compute Global Union (line C3), and
invoke THRESHOLD-SIGN on each Prepare Certificate in
the union. Since all valid Global Server State messages
contained at most 2 ∗W entries, there are at most 2 ∗W
entries in the union and 2 ∗ W Prepare Certificates in
the union. By Lemma B.3, all stable servers convert
the Prepare Certificates into Proposals and invoke
THRESHOLD-SIGN on the union (line E2). By Lemma
B.3, all stable servers generate the Global Constraint
message (line F2).

Since gvi can be arbitrarily high, with the timeout
period increasing by at least a factor of two every N
global view changes, there will eventually be enough
time to complete the bounded amount of computation
and communication in the protocol. We apply the same

logic to all subsequent global views with a stable leader
site to obtain the infinite set.

Finally, we can prove Claim B.2:

Proof: By Lemma B.9, the first stable representa-
tive of some leader site S can complete GLOBAL-VIEW-
CHANGE in a completion view (gv, lv) if CONSTRUCT-
ARU and CONSTRUCT-GLOBAL-CONSTRAINT complete in
bounded finite time. By Lemmas B.12, S can complete
CONSTRUCT-ARU in bounded finite time. This message
is sent to a stable representative in each non-leader site,
and by Lemma B.13, CONSTRUCT-GLOBAL-CONSTRAINT
completes in bounded finite time. We apply this logic
to all global views with stable leader site above gv,
completing the proof.

We now show that either the first or the second stable
representative of the leader site serving for at least a
local timeout period will make global progress, provided
at least one stable server receives an update that it has
not previously executed. This then implies our liveness
condition.

We begin by showing that a stable representative of
the leader site that completes GLOBAL-VIEW-CHANGE
and serves for at least a local timeout period will
be able to pass the Global Constraint messages it
collected to the other stable servers. This implies that
subsequent stable representatives will not need to run
the GLOBAL-VIEW-CHANGE protocol (because they will
already have the necessary Global Constraint messages
and can become globally constrained) and can, after
becoming locally constrained, attempt to make progress.

Lemma B.14: If the system is stable with respect to
time T , then there exists an infinite set of global views
gvi in which either global progress occurs during the
reign of the first stable representative at a stable leader
site to serve for at least a local timeout period, or any
subsequent stable representative elected at the leader
site during gvi will already have a set consisting of a
majority of Global Constraint messages from gvi.

Proof: By Claim B.2, there exists an infinite
set of global views in which the first stable
representative serving for at least a local timeout
period will complete GLOBAL-VIEW-CHANGE. To
complete GLOBAL-VIEW-CHANGE, this representative
collects Global Constraint Messages from a majority
of sites. The representative sends a signed
Collected Global Constraints message to all local
servers (Figure A-13, line D11). Since the site is stable,
all stable servers receive this message within one local
message delay. If we extend the reign of the stable
representative that completed GLOBAL-VIEW-CHANGE
by one local message delay (by increasing the value
of gv), then in all subsequent local views in this
global view, a stable representative will already have

48 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, MONTH-MONTH 200X.

Global Constraint Messages from a majority of servers.
We apply the same logic to all subsequent global views
with a stable leader site to obtain the infinite set.

We now show that if no global progress is made
during the reign of the stable representative that
completed GLOBAL-VIEW-CHANGE, then a second stable
representative that is already globally constrained will
serve for at least a local timeout period.

Lemma B.15: If the system is stable with respect to
time T , then there exists an infinite set of global views
gvi in which either global progress occurs during the
reign of the first stable representative at a stable leader
site to serve for at least a local timeout period, or a
second stable representative is elected that serves for
at least a local timeout period and which already has
a set consisting of a majority of Global Constraint(gvi)
messages upon being elected.

Proof: By Lemma B.14, there exists an infinite set
of global views in which, if no global progress occurs
during the reign of the first stable representative to
serve at least a local timeout period, all subsequent
stable representatives already have a set consisting of
a majority of Global Constraint messages upon being
elected. We now show that a second stable representative
will be elected.

By Claim B.8, if no global progress is made, then the
stable leader site of some such gv will elect f + 3 repre-
sentatives before any stable server expires its Global T
timer, and at least f + 2 of these representatives serve
for at least a local timeout period. Since there are at
most f faulty servers in the site, at least two of these
representatives will be stable.

Since globally ordering an update requires the servers
in the leader site to be locally constrained, we prove the
following lemma relating to the CONSTRUCT-LOCAL-
CONSTRAINT protocol:

Lemma B.16: If the system is stable with respect to
time T and no global progress occrs, then there exists
an infinite set of views (gvi, lvi) in which a run of
CONSTRUCT-LOCAL-CONSTRAINT invoked by a stable
representative of the leader site will complete at all
stable servers in some bounded finite time, Δlc.

To prove Lemma B.16, we use the following two
lemmas to bound the size of the messages sent in
CONSTRUCT-LOCAL-CONSTRAINT:

Lemma B.17: If the system is stable with respect
to time T , no global progress is made, and all stable
servers have a Global aru of max stable seq, then
no server in any stable leader site S has a Prepare
Certificate or Proposal message in its Local History
data structure for any sequence number greater than

(max stable seq + W).

Proof: We show that no server in S can have a
Prepare Certificate for any sequence number s′, where
s′ > (max stable seq + W). This implies that no server
has a Proposal message for any such sequence number
s′, since a Prepare Certificate is needed to construct a
Proposal message.

If any server has a Prepare Certificate for a sequence
number s′ > (max stable seq + W), it collects a Pre-
Prepare and a Prepare from 2f + 1 servers. Since at
most f servers in S are faulty, some stable server sent
a Pre-Prepare or a Prepare for sequence number s′. A
correct representative only sends a Pre-Prepare message
for those sequence numbers in its window (Figure A-
11, line A3). A non-representative server only sends
a Prepare message for those sequence numbers in its
window, since otherwise it would have a conflict (Figure
A-8, line A23). This implies that some stable server
has a window that starts after max stable seq, which
contradicts the definition of max stable seq.

Lemma B.18: If no global progress occurs, and all
stable servers have a Global aru of max stable seq
when installing a global view gv, then if a stable
representative of a leader site S invokes CONSTRUCT-
LOCAL-CONSTRAINT in some local view (gv, lv), any
valid Local Server State message will contain at most
W entries.

Proof: When the stable representative installed global
view gv, it set Pending Proposal Aru to its Global aru
(Figure A-16, line F4), which is max stable seq. Since
Pending Proposal Aru only increases, the stable repre-
sentative invokes CONSTRUCT-LOCAL-CONSTRAINT with
a sequence number of at least max stable seq. A valid
Local Server State message contains Prepare Certificates
or Proposals for those sequence numbers greater than
the invocation sequence number (Figure A-8, line D6).
By Lemma B.17, no server in S has a Prepare Certifi-
cate or Proposal for a sequence number greater than
(max stable seq + W), and thus, a valid message has
at most W entries.

We now prove Lemma B.16:

Proof: By Claim B.1, if no global progress is
made, then all stable servers eventually reconcile their
Global Aru to max stable seq. We consider the global
views in which this has already occurred.

When a stable server becomes globally constrained in
some such view gv, it sets its Pending Proposal Aru
variable to its Global aru (Figure A-16, line F4), which is
equal to max stable seq, since reconciliation has already
occurred. A stable representative only increases its Pend-
ing Proposal Aru when it globally orders an update
or constructs a Proposal for the sequence number one
higher than its current Pending Proposal Aru (Figure

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 49

A-4, lines A5, A12, and C11). The stable representative
does not globally order an update for (max stable seq+
1), since when the server globally ordered an update
for (max stable seq + 1), it would have increased its
Global Aru and executed the update, which violates the
definition of max stable seq. By Lemma B.17, no server
in S has a Prepare Certificate or a Proposal message for
any sequence number s > (max stable seq + W). Thus,
the stable representative’s Pending Proposal Aru can be
at most max stable seq+W when invoking CONSTRUCT-
LOCAL-CONSTRAINT

Since the representative of lv is stable, it sends a
Request Local State message to all local servers, which
arrives within one local message delay. All stable servers
have a Pending Proposal Aru of at least max stable seq
and no more than (max stable seq + W). Thus, if a
stable server’s Pending Proposal Aru is at least as
high as the invocation sequence number, it sends a
Local Server State message immediately (Figure A-17,
lines B5 - B7). Otherwise, the server requests Proposals
for those messages in the difference, of which there are
at most W . Since the site is stable, these messages will
arrive in some bounded time that is a function of the
window size and the local message delay.

By Lemma B.18, any valid Local Server State mes-
sage contains at most W entries. We show below in
Claim B.11 that all correct servers have contiguous en-
tries above the invocation sequence number in their
Local History data structures. From Figure A-20 Block
A, the Local Server State message from a correct server
will contain contiguous entries. The representative will
receive at least 2f + 1 valid Local Server State mes-
sages, since all messages sent by stable servers will
be valid. The representative bundles up the messages
and sends a Local Collected Servers State message. All
stable servers receive the Local Collected Servers State
message within one local message delay. The message
will meet the conditionals in Figure A-17, lines D2 and
D3, at any stable server that sent a Local Server State
message. They do not see a conflict at Figure A-8,
line E4, because the representative only collects Lo-
cal Server State messages that are contiguous. All stable
servers apply the Local Collected Servers State mes-
sage to their Local History data structures.

Since gv can be arbitrarily high, with the timeout pe-
riod increasing by at least a factor of two every N global
view changes, there will eventually be enough time for
all stable servers to receive the Request Local Server
state message, reconcile their Local History data struc-
tures (if necessary) and send a Local Server State mes-
sage, and process a Local Collected Servers State mes-
sage from the representative. Thus, there will eventually
be enough time to complete the bounded amount of
computation and communication in the protocol, and we
can apply this argument to all subsequent global views
with stable leader sites to obtain the infinite set.

The following lemma encapsulates the notion

that all stable servers will become globally and locally
constrained shortly after the second stable representative
to serve for at least a local timeout period is elected:

Lemma B.19: If the system is stable with respect
to time T and no global progress occurs, then there
exists an infinite set of views in which all stable servers
become globally and locally constrained within Δlc

time of the election of the second stable representative
serving for at least a local timeout period.

Proof: By Lemma B.14, the second stable representa-
tive serving for at least a local timeout period will have a
set of a majority of Global Constraint messages from its
current global view upon being elected. This server bun-
dles up the messages, signs the bundle, and send it to all
local servers as a Collected Global Constraints message
(Figure A-13, line D11). Since the site is stable, all stable
servers receive the message within one local message
delay and become globally constrained. The stable repre-
sentative also invokes CONSTRUCT-LOCAL-CONSTRAINT
upon being elected (line D6). Since we consider those
global views in which reconciliation has already oc-
curred, Lemma B.16 implies that all stable servers be-
come locally constrained within some bounded finite
time.

Since all stable servers are globally and locally
constrained, the preconditions for attempting to make
global progress are met. We use the following term in
the remainder of the proof:

DEFINITION B.4: We say that a server is a
Progress Rep if (1) it is a stable representative of
a leader site, (2) it serves for at least a local timeout
period if no global progress is made, and (3) it can cause
all stable servers to be globally and locally constrained
within Δlc time of its election.

The remainder of the proof shows that, in some view,
the Progress Rep can globally order and execute an
update that it has not previously executed (i.e., it can
make global progress) if no global progress has other-
wise occurred.

We first show that there exists a view in which
the Progress Rep has enough time to complete the
ASSIGN-GLOBAL-ORDER protocol (i.e., to globally order
an update), assuming it invokes ASSIGN-SEQUENCE.
To complete ASSIGN-GLOBAL-ORDER, the Progress Rep
must coordinate the construction of a Proposal message,
send the Proposal message to the other sites, and collect
Accept messages from �S/2� sites. As in the case of
the GLOBAL-VIEW-CHANGE protocol, we leverage the
properties of the global and local timeouts to show
that, as the stable sites move through global views
together, the Progress Rep will eventually remain in
power long enough to complete the protocol, provided
each component of the protocol completes in some

50 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, MONTH-MONTH 200X.

bounded, finite time. This intuition is encapsulated in
the following lemma:

Lemma B.20: If the system is stable with respect to
time T and no global progress occurs, then there exists
a view (gv, lv) in which, if ASSIGN-SEQUENCE and
THRESHOLD-SIGN complete in bounded finite times,
and all stable servers at all non-leader sites invoke
THRESHOLD-SIGN on the same Proposal from gv, then
if the Progress Rep invokes ASSIGN-SEQUENCE at least
once and u is the update on which it is first invoked, it
will globally order u in (gv, lv).

Proof: By Claim B.1, if no global progress oc-
curs, then all stable servers eventually reconcile their
Global aru to max stable seq. We consider the global
views in which this has already occurred.

Since the Progress Rep has a Global aru of
max stable seq, it assigns u a sequence number of
max stable seq + 1. Since ASSIGN-SEQUENCE completes
in some bounded, finite time Δseq , the Progress Rep
constructs P(gv, lv, max stable seq + 1, u), a Proposal
for sequence number max stable seq + 1.

By Claim B.8, if no global progress occurs, then a stable
representative of the leader site can communicate with
a stable representative at each stable non-leader site in
a global view gv for some amount of time, Δgv , that
increases by at least a factor of two every N global
view changes. Since we assume that THRESHOLD-SIGN
is invoked by all stable servers at the stable non-leader
sites and completes in some bounded, finite time, Δsign,
there is a global view sufficiently large that (1) the leader
site representative can send the Proposal P to each non-
leader site representative, (2) each non-leader site repre-
sentative can complete THRESHOLD-SIGN to generate an
Accept message, and (3) the leader site representative
can collect the Accept messages from a majority of sites.

We now show that, if no global progress occurs
and some stable server received an update that it had
not previously executed, then some Progress Rep will
invoke ASSIGN-SEQUENCE. We assume that the recon-
ciliation guaranteed by Claim B.1 has already com-
pleted (i.e., all stable servers have a Global aru equal
to max stable seq). From the pseudocode (Figure A-
11, line A1), the Progress Rep invokes ASSIGN-GLOBAL-
ORDER after becoming globally and locally constrained.
The Progress Rep calls Get Next To Propose to get the
next update, u, to attempt to order (line A4). The only
case in which the Progress Rep will not invoke ASSIGN-
SEQUENCE is when u is NULL. Thus, we must first show
that Get Next To Propose will not return NULL.

Within Get Next To Propose, there are two possible
cases:

1) Sequence number max stable seq + 1 is
constrained: The Progress Rep has a Prepare-
Certificate or Proposal in Local History and/or a

Proposal in Global History for sequence number
max stable seq + 1.

2) Sequence number max stable seq + 1 is uncon-
strained.

We show that, if max stable seq + 1 is constrained,
then u is an update that has not been executed by any
stable server. If max stable seq+1 is unconstrained, then
we show that if any stable server in site S received an
update that it had not executed after the stabilization
time, then u is an update that has not been executed by
any stable server.

To show that the update returned by
Get Next To Propose is an update that has not
yet been executed by any stable server, we must first
show that the same update cannot be globally ordered
for two different sequence numbers. Claim B.10 states
that if a Globally Ordered Update exists that binds
update u to sequence number seq, then no other
Globally Ordered Update exists that binds u to seq′,
where seq �= seq′. We use this claim to argue that if
a server globally orders an update with a sequence
number above its Global aru, then this update could not
have been previously executed. It follows immediately
that if a server globally orders any update with a
sequence number one greater than its Global aru, then
it will update execute this update and make global
progress. We now formally state and prove Claim B.10.

Claim B.10: If a Globally Ordered Update(seq, u)
exists, then there does not exist a Glob-
ally Ordered Update(seq′, u), where seq �= seq′.

We begin by showing that, if an update is bound to
a sequence number in either a Pre-Prepare, Prepare-
Certificate, Proposal, or Globally Ordered Update,
then, within a local view at the leader site, it cannot be
bound to a different sequence number.

Lemma B.21: If in some global and local views (gv, lv)
at least one of the following constraining entries exist
in the Global History or Local History of f + 1 correct
servers:

1) Pre-Prepare(gv, lv, seq, u)
2) Prepare-Certificate(*, *, seq, u)
3) Proposal(*, *, seq, u)
4) Globally Ordered Update(*, *, seq, u)

Then, neither a Prepare-Certificate(gv, lv, seq′, u) nor
a Proposal(gv, lv, seq′, u) can be constructed, where
seq �= seq′.

Proof: When a stable server receives a Pre-
Prepare(gv, lv, seq, u), it checks its Global History and
Local History for any constraining entries that contains
update u. Lemma B.21 lists the message types that are
examined. If there exists a constraining entry binding
update u to seq′, where seq �= seq′, then Pre-Prepare, p,
is ignored (Figure A-8, lines 25-26).

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 51

A Prepare-Certificate consists of 2f Prepares and a Pre-
Prepare message. We assume that there are no more than
f malicious servers and a constraining entry binding
(seq, u), b, exists, and we show that there is a contra-
diction if Prepare-Certificate(gv, lv, seq′, u), pc, exists. At
least f + 1 correct servers must have contributed to pc.
By assumption (as stated in Lemma B.21), at least f + 1
correct servers have constraining entry b. This leaves 2f
servers (at most f that are malicious and the remaining
that are correct) that do not have b and could contribute
to pc. Therefore, at least one correct server that had
constraint b must have contributed to pc. It would not do
this if it were correct; therefore, we have a contradiction.

A correct server will not invoke THRESHOLD-SIGN
to create a Proposal message unless a corresponding
Prepare-Certificate exists. Therefore, it follows that, if
Prepare-Certificate(gv, lv, seq′, u) cannot exist, then
Proposal(gv, lv, seq′, u) cannot exist.

We now use Invariant A.1 from Proof of Safety:

Let P(gv, lv, seq, u) be the first threshold-signed Pro-
posal message constructed by any server in leader site S
for sequence number seq in global view gv. We say that
Invariant A.1 holds with respect to P if the following
conditions hold in leader site S in global view gv:

1) There exists a set of at least f + 1 correct servers
with a Prepare Certificate PC(gv, lv′, seq, u) or
a Proposal(gv, lv′, seq, u), for lv′ ≥ lv, in
their Local History[seq] data structure, or a Glob-
ally Ordered Update(gv′, seq, u), for gv′ ≥ gv, in
their Global History[seq] data structure.

2) There does not exist a server with any conflicting
Prepare Certificate or Proposal from any
view (gv, lv′), with lv′ ≥ lv, or a conflicting
Globally Ordered Update from any global view
gv′ ≥ gv.

We use the Invariant A.1 to show that if a
Proposal(gv, lv, seq, u) is constructed for the first
time in global view gv, then a constraining entry that
binds u to seq will exist in all views (gv, lv′), where
lv′ ≥ lv.

Lemma B.22: Let P(gv, lv, seq, u) be the first
threshold-signed Proposal message constructed by any
server in leader site S binding update u to sequence
number seq in global view gv. No other Proposal
binding u to seq′ can be constructed in global view gv,
where seq �= seq′.

Proof: We show that Invariant A.1 holds within the
same global view in Proof of Safety. We now show that
two Proposals having different sequence numbers and
the same update cannot be created within the same global
view.

From Lemma B.21 , if Proposal(gv, lv, seq, u), P ,
is constructed, then no constraining entries binding u

to seq′ exist in (gv, lv). Therefore, from Invariant A.1,
no Proposal(gv, lv′′, seq′, u), P ′ could have been con-
structed, where lv′′ ≤ lv. This follows, because, if P ′ was
constructed, then Invariant A.1 states that a constraint
binding u to seq′ would exist in view (gv, lv), in which
case P could not have been constructed. In summary, we
have proved that if P , binding u to seq, is constructed
for the first time in some local view in gv, then no other
proposal binding u to seq′ was constructed in global view
gv or earlier.

We assume that we create P . From Invariant A.1, after
P was constructed, constraining messages will exist in
all local views ≥ lv. These constraining messages will
always bind u to seq. Therefore, from Lemma B.21 no
Proposal can be constructed that binds u to a different
sequence number than in P in any local view lv′, where
lv′ ≥ lv.

We now use Invariant A.2 from Proof of Safety in a
similar argument:

Let u be the first update globally ordered by any server
for sequence number seq, and let gv be the global view
in which u was globally ordered. Let P(gv, lv, seq, u)
be the first Proposal message constructed by any server
in the leader site in gv for sequence number seq. We say
that Invariant A.2 holds with respect to P if the following
conditions hold:

1) There exists a majority of sites, each with at
least f + 1 correct servers with a Prepare
Certificate(gv, lv′, seq, u), a Proposal(gv′, *, seq, u),
or a Globally Ordered Update(gv′, seq, u), with
gv′ ≥ gv and lv′ ≥ lv, in its Global History[seq]
data structure.

2) There does not exist a server with any
conflicting Prepare Certificate(gv′, lv′, seq, u′),
Proposal(gv′, *, seq, u′), or Glob-
ally Ordered Update(gv′, seq, u′), with gv′ ≥ gv,
lv′ ≥ lv, and u′ �= u.

We use the Invariant A.2 to show that if
Globally Ordered Update(gv, lv, seq, u) is constructed,
then there will be a majority of sites where at least
f + 1 correct servers in each site have a constraining
entry that binds u to seq in all global views greater
than or equal to gv. From this, it follows that any set
of Global Constraint messages from a majority of sites
will contain an entry that binds u to seq.

Lemma B.23: Let G(gv, lv, seq, u) be the first
Globally Ordered Update constructed by any server.
No other Prepare-Certificate or Proposal binding u to
seq′ can be constructed.

Proof: We show that Invariant A.2 holds across
global views in Proof of Safety. We now show that if Glob-
ally Ordered Update(gv, lv, seq, u), G, is constructed
at any server, then no Prepare-Certificate or Proposal

52 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, MONTH-MONTH 200X.

having different sequence numbers and the same update
can exist.

If G exists, then Proposal(gv, lv, seq, u), P , must
have been created. From Lemma B.21, if P was con-
structed, then no constraining entries binding u to seq′

exist in (gv, lv). Therefore, from Invariant A.2, no Glob-
ally Ordered Update(gv, lv′′, seq′, u), G′ could have
been constructed, where lv′′ ≤ lv. This follows, because,
if G′ was constructed, then Invariant A.1 implies that a
constraint binding u to seq′ would exist in views (gv, lv),
in which case G could not have been constructed. Proof
of Satefy proves this in detail. To summarize, if a majority
of sites each have at least f +1 correct servers that have
a global constraining entry, b, then these sites would all
generate Global Constraint messages that include b. To
become globally constrained, correct servers must apply
a bundle of Global Constraint messages from a majority
of sites, which includes one Global Constraint message
that contains b. A correct server will never send a Prepare
or Pre-Prepare message without first becoming globally
constrained. Therefore, if G′ was constructed, then there
would have been a constraint binding u to seq′ in the
site where G was constructed. We have already shown
that this was not possible, because G was constructed.
In summary, we have proved that if G, binding u to
seq, is constructed for the first time in some global view
gv, then no Globally Ordered Update binding u to seq′ was
constructed in global view gv or earlier.

We assume that we construct G. Invariant A.2, implies
that in all global views ≥ gv, constraining messages,
binding u to seq, will exist in at least f + 1 servers at
the leader site when a leader site constructs a Proposal.
Therefore, from Lemma B.21 no Proposal can be con-
structed that binds u to a different sequence number than
in seq in any local view lv′, where lv′ ≥ lv.

We now return to the first case within
Get Next To Propose, where (max stable seq + 1)
is constrained at the Progress Rep.

Lemma B.24: If sequence number (max stable seq +
1) is constrained when a Progress Rep calls
Get Next To Propose, then the function returns an
update u that has not previously been executed by any
stable server.

Proof: From Figure A-12 lines A2 - A5, if
(max stable seq +1) is constrained at the Progress Rep,
then Get Next To Propose returns the update u to
which the sequence number is bound.

We assume that u has been executed by some stable
server and show that this leads to a contradiction. Since
u was executed by a stable server, it was executed
with some sequence number s less than or equal to
max stable seq. By Lemma B.23, if u has already been
globally ordered with sequence number s, no Prepare
Certificate, Proposal, or Globally Ordered Update can
be constructed for any other sequence number s′ (which

includes (max stable seq + 1)). Thus, the constraining
update u cannot have been executed by any stable server,
since all executed updates have already been globally
ordered.

We now consider the second case within
Get Next To Propose, in which (max stable seq + 1)
is unconstrained at the Progress Rep (Figure A-12,
lines A6 - A7). In this part of the proof, we divide the
Update Pool data structure into two logical parts:

DEFINITION B.5: We say an update that was added to
the Update Pool is in a logical Unconstrained Updates
data structure if it does not appear as a Prepare
Certificate, Proposal, or Globally Ordered Update
in either the Local History or Global History data
structure.

We begin by showing that, if some stable server in
site R received an update u that it had not previously
executed, then either global progress occurs or the
Progress Rep of R eventually has u either in its
Unconstrained Updates data structure or as a Prepare
Certificate, Proposal, or Globally Ordered Update
constraining some sequence number.

Lemma B.25: If the system is stable with respect to
time T , and some stable server r in site R receives
an update u that it has not previously executed
at some time T ′ > T , then either global progress
occurs or there exists a view in which, if sequence
number (max stable seq + 1) is unconstrained when
a Progress Rep calls Get Next To Propose, then the
Progress Rep has u either in its Unconstrained Updates
data structure or as a Prepare Certificate, Proposal, or
Globally Ordered Update.

Proof: If any stable server previously executed u,
then by Claim B.1, all stable servers (including r) will
eventually execute the update and global progress oc-
curs.

When server r receives u, it broadcasts u within its site,
R (Figure A-3, line F2). Since R is stable, all stable servers
receive u within one local message delay. From Figure A-
3, line F5, they place u in their Unconstrained Updates
data structure. By definition, u is only removed from
the Unconstrained Updates (although it remains in the
Update Pool) if the server obtains a Prepare Certifi-
cate, Proposal, or Globally Ordered Update binding u
to a sequence number. If the server later removes this
binding, the update is placed back into the Uncon-
strained Updates data structure. Since u only moves
between these two states, the lemma holds.

Lemma B.25 allows us to consider two cases, in which
some new update u, received by a stable server in site
R, is either in the Unconstrained Updates data structure
of the Progress Rep, or it is constraining some other

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 53

sequence number. Since there are an infinite number of
consecutive views in which a Progress Rep exists, we
consider those views in which R is the leader site. We
first examine the former case:

Lemma B.26: If the system is stable with respect to
time T , and some stable server r in site R receives
an update u that it has not previously executed
at some time T ′ > T , then if no global progress
occurs, there exists a view in which, if sequence
number (max stable seq + 1) is unconstrained when
a Progress Rep calls Get Next To Propose and u is
in the Unconstrained Updates data structure of the
Progress Rep, Get Next To Propose will return an
update not previously executed by any stable server.

Proof: By Lemma B.25, u is either in the Uncon-
strained Updates data structure of the Progress Rep or
it is constraining some other sequence number. Since
u is in the Unconstrained Updates data structure of
the Progress Rep and (max stable seq + 1) was uncon-
strained, u or some other unconstrained update will be
returned from Get Next To Propose (Figure A-12, line
A7). The returned update cannot have been executed by
any stable server, since by Claim B.1, all stable servers
would have executed the update and global progress
would have been made.

We now examine the case in which (max stable seq+
1) is unconstrained at the Progress Rep, but the new
update u is not in the Unconstrained Updates data
structure of the Progress Rep. We will show that this
case leads to a contradiction: since u is constraining some
sequence number in the Progress Rep’s data structures
other than (max stable seq+1), some other new update
necessarily constrains (max stable seq+1). This implies
that if (max stable seq + 1) is unconstrained at the
Progress Rep, u must be in the Unconstrained Updates
data structure. In this case, Get Next To Propose will
return either u or some other unconstrained update that
has not yet been executed by any stable server.

To aid in proving this, we introduce the following
terms:

DEFINITION B.6: We say that a Prepare Certificate,
Proposal, or Globally Ordered Update is a constraining
entry in the Local History and Global History data
structures.

DEFINITION B.7: We say that a server is contiguous
if there exists a constraining entry in its Local History
or Global History data structures for all sequence
numbers up to and including the sequence number of
the server’s highest constraining entry.

We will now show that all correct servers are always
contiguous. Since correct servers begin with empty data
structures, they are trivially contiguous when the system

starts. Moreover, all Local Collected Servers State and
Collected Global Constraints bundles are empty
until the first view in which some server collects a
constraining entry. We now show that, if a server begins
a view as contiguous, it will remain contiguous. The
following lemma considers data structure modifications
made during normal case operation; specifically, we
defer a discussion of modifications made to the data
structures by applying a Local Collected Servers State
or Collected Global Constraints message, which we
consider below.

Lemma B.27: If a correct server is contiguous before
inserting a constraining entry into its data structure
that is not part of a Local Collected Servers State
or Collected Global Constraints message, then it is
contiguous after inserting the entry.

Proof: There are three types of constraining entries
that must be considered. We examine each in turn.

When a correct server inserts a Prepare Certificate into
either its Local History or Global History data structure,
it collects a Pre-Prepare and 2f corresponding Prepare
messages. From Figure A-3, lines B2 - B33, a correct
server ignores a Prepare message unless it has a Pre-
Prepare for the same sequence number. From Figure
A-8, line A21, a correct server sees a conflict upon
receiving a Pre-Prepare unless it is contiguous up to
that sequence number. Thus, when the server collects
the Prepare Certificate, it must be contiguous up to that
sequence number.

Similarly, when a server in a non-leader site receives a
Proposal message with a given sequence number, it only
applies the update to its data structure if it is contiguous
up to that sequence number (Figure A-7, line A9). For
those servers in the leader site, a Proposal is generated
when the THRESHOLD-SIGN protocol completes (Figure
A-10, lines D2 and D3). Since a correct server only
invokes THRESHOLD-SIGN when it collects a Prepare
Certificate (line C7), the server at least has a Prepare
Certificate, which is a constraining entry that satisfies
the contiguous requirement.

A correct server will only apply a Glob-
ally Ordered Update to its Global History data
structure if it is contiguous up to that sequence number
(Figure A-4, line C2).

During CONSTRUCT-ARU or CONSTRUCT-GLOBAL-
CONSTRAINT, a server converts its Prepare Certificates
to Proposals by invoking THRESHOLD-SIGN, but a con-
straining entry still remains for each sequence number
that was in a Prepare Certificate after the conversion
completes.

The only other time a contiguous server
modifies its data structures is when it
applies a Local Collected Servers State or
Collected Global Constraints message to its data
structures. We will now show that the union

54 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, MONTH-MONTH 200X.

computed on any Local Collected Servers State or
Collected Global Constraints message will result in a
contiguous set of constraining entries directly above the
associated invocation sequence number. We will then
show that, if a contiguous server applies the resultant
union to its data structure, it will be contiguous after
applying.

We begin by showing that any valid
Local Collected Servers State message contains
contiguous constraining entries beginning above
the invocation sequence number.

Lemma B.28: If all correct servers are contiguous
during a run of CONSTRUCT-LOCAL-CONSTRAINT, then
any contiguous server that applies the resultant
Local Collected Servers State message will be
contiguous after applying.

Proof: A correct server sends a Local Server State
message in response to a Request Local State mes-
sage containing some invocation sequence number, seq
(Figure A-17, line B7). The server includes all con-
straining entries directly above seq (Figure A-20, Block
A). Each Local Server State message sent by a con-
tiguous server will therefore contain contiguous con-
straining entries beginning at seq + 1. The represen-
tative collects 2f + 1 Local Server State messages. By
Figure A-8 line E4, each Local Server State message
collected is enforced to be contiguous. When the Lo-
cal Collected Servers State bundle is received from the
representative, it contains 2f + 1 messages, each with
contiguous constraining entries beginning at seq + 1.
The Local Collected Servers State message is only ap-
plied when a server’s Pending Proposal Aru is at least
as high as the invocation sequence number contained
in the messages within (Figure A-17, lines D3 - D4).
Since the Pending Proposal Aru reflects Proposals and
Globally Ordered Updates, the server is contiguous up
to and including the invocation sequence number when
applying.

When Compute Local Union is computed on the bun-
dle (Figure A-3, line D2), the result must contain contigu-
ous constraining entries beginning at seq + 1, since it is
the union of contiguous messages. After applying the
union, the server removes all constraining entries above
the highest sequence number for which a constraining
entry appeared in the union, and thus it will still be
contiguous.

We now use a similar argument to show that any con-
tiguous server applying a Collected Global Constraints
message to its data structure will be contiguous after
applying:

Lemma B.29: If all correct servers are contiguous
during a run of GLOBAL-VIEW-CHANGE, then
any contiguous server applying the resultant
Collected Global Constraints message to its data

structure will be contiguous after applying.

Proof: Using the same logic as in Lemma B.28
(but using the Global History and Global aru instead
of the Local History and Pending Proposal Aru), any
Global Constraint message generated will contain con-
tiguous entries beginning directly above the invoca-
tion sequence number contained in the leader site’s
Aru Message. The Collected Global Constraints mes-
sage thus consists of a majority of Global Constraints
messages, each with contiguous constraining entries be-
ginning directly above the invocation sequence num-
ber. When Compute Constraint Union is run (Fig-
ure A-4, line D2), the resultant union will be con-
tiguous. A contiguous server only applies the Col-
lected Global Constraints message if its Global aru is at
least as high as the invocation sequence number reflected
in the messages therein (Figure A-7, lines H5 - H6),
and thus it is contiguous up to that sequence number.
When Compute Constraint Union is applied (Figure A-
21, Blocks E and F) the server only removes constraining
entries for those sequence numbers above the sequence
number of the highest constraining entry in the union,
and thus the server remains contiguous after applying.

We can now make the following claim regarding
contiguous servers:

Claim B.11: All correct servers are always contiguous.

Proof: When the system starts, a correct server
has no constraining entries in its data structures.
Thus, it is trivially contiguous. We now consider the
first view in which any constraining entry was con-
structed. Since no constraining entries were previously
constructed, any Local Collected Servers State or Col-
lected Global Constraints message applied during this
view must be empty. By Lemma B.27, a contiguous
server inserting a Prepare Certificate, Proposal, or Glob-
ally Ordered Update into its data structure during this
view remains contiguous. Thus, when CONSTRUCT-
LOCAL-CONSTRAINT or GLOBAL-VIEW-CHANGE are in-
voked, all correct servers are still contiguous. By Lemma
B.28, any contiguous server that becomes locally con-
strained by applying a Local Collected Servers State
message to its data structure remains contiguous af-
ter applying. By Lemma B.29, any contiguous server
that becomes globally constrained by applying a Col-
lected Global Constraints message remains contiguous
after applying. Since these are the only cases in which a
contiguous server modifies its data structures, the claim
holds.

We can now return to our examination of the
Get Next To Propose function to show that, if
(max stable seq + 1) is unconstrained at the
Progress Rep, then some new update must be in

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 55

the Unconstrained Updates data structure of the
Progress Rep.

Lemma B.30: If the system is stable with respect to
time T , and some stable server r in site R receives
an update u that it has not previously executed
at some time T ′ > T , then if no global progress
occurs, there exists a view in which, if sequence
number (max stable seq + 1) is unconstrained when
a Progress Rep calls Get Next To Propose, u must be
in the Unconstrained Updates data structure of the
Progress Rep.

Proof: Since the Progress Rep is a stable, cor-
rect server, by Claim B.11, it is contiguous. This
implies that, since (max stable seq + 1) is uncon-
strained, the Progress Rep does not have any constrain-
ing entry (i.e., Prepare Certificate, Proposal, or Glob-
ally Ordered Update) for any sequence number higher
than (max stable seq+1). By Lemma B.25, u must either
be in the Unconstrained Updates data structure or as
a constrained entry. It is not a constrained entry, since
the Progress Rep has a Global aru of max stable seq
and has not executed u (since otherwise progress would
have been made). Thus, u must appear in the Uncon-
strained Updates data structure.

Corollary B.31: If the system is stable with respect
to time T , and some stable server r in site R receives
an update u that it has not previously executed at
some time T ′ > T , then if no global progress occurs,
there exists an infinite set of views in which, if the
Progress Rep invokes Get Next To Propose, it will
return an update u that has not been executed by any
stable server.

Proof: Follows immediately from Lemmas B.26 and
B.30.

Corollary B.31 implies that there exists a view in
which a Progress Rep will invoke ASSIGN-SEQUENCE
with an update that has not been executed by any stable
server, since it does so when Get Next To Propose does
not return NULL. We now show that there exists an
infinite set of global views in which ASSIGN-SEQUENCE
will complete in some bounded finite time.

Lemma B.32: If global progress does not occur, and
the system is stable with respect to time T , then there
exists an infinite set of views in which, if a stable
server invokes ASSIGN-SEQUENCE when Global seq
= seq, then ASSIGN-SEQUENCE will return Proposal
with sequence number seq in finite time.

Proof: From Lemma B.14, there exists a view (gv, lv)
where a stable representative, r, in the leader site S
has Global Constraint(gv) messages from a majority of
sites. Server r will send construct and send a Col-

lected Global Constraints(gv) to all stable servers in S.
The servers become globally constrained when they pro-
cess this message. From Lemma B.16, all stable servers in
S will become locally constrained. To summarize, there
exists a view (gv, lv) in which:

1) Stable representative r has sent Col-
lected Global Constraints and a Lo-
cal Collected Servers State message to all stable
servers. This message arrives at all stable servers
in one local area message delay.

2) All stable servers in S have processed the constrain
collections sent by the representative, and, there-
fore, all stable servers in S are globally and locally
constrained.

We now proceed to prove that ASSIGN-SEQUENCE will
complete in a finite time in two steps. First we show that
the protocol will complete if there are no conflicts when
the stable servers process the Pre-Prepare message from
r. Then we show that there will be no conflicts.

When r invokes ASSIGN-SEQUENCE, it sends a Pre-
Prepare(gv, lv, seq, u) to all servers in site S (Fig-
ure A-10, line A2). All stable servers in S will re-
ceive this message in one local area message delay.
When a non-representative stable server receives a Pre-
Prepare message (and there is no conflict), it will send
a Prepare(gv, lv, seq, u) message to all servers in S
(line B3). Therefore, since there are 2f stable servers that
are not the representative, all stable servers in S will
receive 2f Prepare messages and a Pre-Prepare message
for (gv, lv, seq, u) (line C3). This set of 2f + 1 messages
forms a Prepare-Certificate(gv, lv, seq, u), pc. When a
stable server receives pc, it invokes THRESHOLD-SIGN on
an unsigned Proposal(gv, lv, seq, u) message (line C7).
By Claim B.3, THRESHOLD-SIGN will return a correctly
threshold signed Proposal(gv, lv, seq, u) message to all
stable servers.

Now we must show that there are no conflicts when
stable servers receive the Pre-Prepare message from r.
Intuitively, there will be no conflicts because the repre-
sentative of the leader site coordinates the constrained
state of all stable servers in the site. To formally prove
that there will not be a conflict when a stable server
receives a Pre-Prepare(gv, lv, seq, u), preprep from r, we
consider block A of Figure A-8. We address each case in
the following list. We first state the condition that must
be true for there to be a conflict, then, after a colon, we
state why this case cannot occur.

1) not locally constrained or not globally constrained:
from the above argument, all servers are locally
and globally constrained

2) preprep is not from r: in our scenario, r sent the
message

3) gv �= Global view or lv �= Local view: all servers
in site S are in the same local and global views

4) There exists a Local History[seq].Pre-
Prepare(gv, lv, seq, u′), where u′ �= u: If there are
two conflicting Pre-Prepare messages for the same

56 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. X, NO. X, MONTH-MONTH 200X.

global and local views, then the representative at
the leader site must have generated both messages.
This will not happen, because r is a correct server
and will not send two conflicting Pre-Prepares.

5) There exists either a Prepare-
Certificate(gv, lv, seq, u′) or a
Proposal(gv, lv, seq, u′) in Local History[seq],
where u′ �= u: A correct representative makes
a single Local Collected Servers State message,
lcss. All stable servers become locally constrained
by applying lcss to their local data structures.
Block D of Figure A-3 shows how this message
is processed. First, the union is computed using
a deterministic function that returns a list of
Proposals and Prepare-Certificates having unique
sequence numbers. The union also contains the
invocation aru, the aru on which it was invoked.
On Lines D5 - D11, all Pre-Prepares, Prepare-
Certificates, and Proposals with local views <
lv (where lv is the local view of both the server
and the Local Collected Servers State message)
are removed from the Local History. Since no
Pre-Prepares have been created in (gv, lv), no
Prepare-Certificates or Proposals exist with higher
local views than lv. Then, on D12 - D17, all
Proposals and Prepare-Certificates in the union
are added to the Local History. Since all stable
servers compute identical unions, these two
steps guarantee that all stable servers will have
identical Local History data structures after they
apply lcss. A correct representative will never
invoke ASSIGN-SEQUENCE such that it sends Pre-
Prepare(*, *, seq′, *) where seq′ ≤ the invocation
aru. Therefore, when r invokes ASSIGN-SEQUENCE,
it will send a Pre-Prepare(gv, lv, seq, u) that doesn’t
conflict with the Local History of any stable server
in S.

6) There exists either a Proposal(gv, lv, seq, u′)
or a Globally Ordered Update(gv, lv, seq, u′)
in Global History[seq], where u′ �= u:
A correct representative makes a single
Collected Global Constraints message, cgc.
All stable servers become globally constrained
by applying cgc to their global data structures.
Block D of Figure A-4 shows how this message
is processed. First, the union is computed
using a deterministic function that returns a
list of Proposals and Globally Ordered Updates
having unique sequence numbers. The union
also contains the invocation aru, the aru on
which GLOBAL-VIEW-CHANGE was invoked.
On Lines D5 - D9, all Prepare-Certificates
and Proposals with global views < gv (where
gv is the local view of both the server and
the Collected Global Constraints message) are
removed from the Global History. Any Pre-
Prepares or Proposals that have global views equal
to gv must also be in the union and be consistent

with the entry in the union. Then, on D10 - D14,
all Proposals and Globally Ordered Updates in
the union are added to the Global History. Since
all stable servers compute identical unions, these
two steps guarantee that all stable servers will
have identical Global History data structures
after they apply cgc. A correct representative
will never invoke ASSIGN-SEQUENCE such that it
sends Pre-Prepare(*, *, seq′, *) where seq′ ≤ the
invocation aru. Therefore, when r invokes ASSIGN-
SEQUENCE, it will send a Pre-Prepare(gv, lv, seq, u)
than doesn’t conflict with the Global History of
any stable server in S.

7) The server is not contiguous up to
seq: A correct server applies the same
Local Collected Servers State and Col-
lected Global Constraints messages as r.
Therefore, as described in the previous two
cases, the correct server has the same constraints
in its Local History and Global History as r. By
Lemma B.11, all correct servers are contiguous.
Therefore, there will never be a conflict when a
correct server receives an update from r that is
one above r’s Global aru.

8) seq is not in the servers window: If there is no
global progress, all servers will reconcile up to
the same global sequence number, max stable seq.
Therefore, there will be no conflict when a correct
server receives an update from r that is one above
r’s Global aru.

9) There exists a constraint binding update
u to seq′ in either the Local History or
Global History: Since a correct server applies
the same Local Collected Servers State and
Collected Global Constraints messages as r,
the correct server has the same constraints
in its Local History and Global History as r.
Representative r will send a Pre-Prepare(*, *, seq, u)
where either (1) u is in r’s unconstrained update
pool or (2) u is constrained. If u is constrained,
then from Lemmas B.21, B.22, and B.23 the u must
be bound to seq at both r and the correct server.
This follows because two bindings (seq, u) and
(seq′, u) cannot exist in any correct server.

We have shown that a Pre-Prepare sent by r will not
cause a conflict at any stable server. This follows from
the fact that the local and global data structures of all
stable servers will be in the same state for any sequence
number where r sends Pre-Prepare(gv, lv, seq, u), as
shown above. Therefore, Prepare messages sent by stable
servers in response to the first Pre-Prepare message
sent by r in (gv, lv) will also not cause conflicts. The
arguments are parallel to those given in detail in the
above cases.

We have shown that Pre-Prepare and Prepare mes-
sages sent by the stable servers will not cause conflicts
when received by the stable servers. We have also shown

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 57

that ASSIGN-SEQUENCE will correctly return a Proposal
message if this is true, proving Lemma B.20.

Having shown that ASSIGN-SEQUENCE will complete
in a finite amount of time, we now show that the stable
non-leader sites will construct Accept messages in a
finite time. Since Claim B.3 states that THRESHOLD-SIGN
completes in finite time if all stable servers invoke it on
the same message, we must simply show that all stable
servers will invoke THRESHOLD-SIGN upon receiving
the Proposal message generated by ASSIGN-SEQUENCE.

Lemma B.33: If the system is stable with respect
to time T and no global progress occurs, then there
exists an infinite set of views (gv, lv) in which all stable
servers at all non-leader sites invoke THRESHOLD-SIGN
on a Proposal(gv, *, seq, u).

Proof: We consider the global views in which all
stable servers have already reconciled their Global aru
to max stable seq and in which a Progress Rep ex-
ists. By Corollary B.31, the Progress Rep will in-
voke ASSIGN-SEQUENCE when Global seq is equal to
max stable seq +1. By Lemma B.32, there exists an infi-
nite set of views in which ASSIGN-SEQUENCE will return
a Proposal in bounded finite time. By Claim B.8, there
exists a view in which the Progress Rep has enough time
to send the Proposal to a stable representative in each
stable non-leader site.

We must show that all stable servers in all stable
non-leader sites will invoke THRESHOLD-SIGN on an
Accept message upon receiving the Proposal. We first
show that no conflict will exist at any stable server.
The first two conflicts cannot exist (Figure A-7, lines A2
and A4), because the stable server is in the same global
view as the stable servers in the leader site, and the
server is in a non-leader site. The stable server cannot
have a Globally Ordered Update in its Global History
data structure for this sequence number (line A6) be-
cause otherwise it would have executed the update,
violating the definition of max stable seq. The server
is contiguous up to (max stable seq + 1) (line A9)
because its Global aru is max stable seq and it has
a Globally Ordered Update for all previous sequence
numbers. The sequence number is in its window (line
A11) since max stable seq < (max stable seq + 1) ≤
(max stable seq + W).

We now show that all stable servers will apply the Pro-
posal to their data structures. From Figure A-4, Block A,
the server has either applied a Proposal from this view
already (from some previous representative), in which
case it would have invoked THRESHOLD-SIGN when it
applied the Proposal, or it will apply the Proposal just
received because it is from the latest global view. In both
cases, all stable servers have invoked THRESHOLD-SIGN
on the same message.

Finally, we can prove L1 - GLOBAL LIVENESS:

Proof: By Claim B.1, if no global progress oc-
curs, then all stable servers eventually reconcile their
Global aru to max stable seq. We consider those views
in which this reconciliation has completed. By Lemma
B.19, there exists an infinite set of views in which all
stable servers become globally and locally constrained
within a bounded finite time Δlc of the election of the
second stable representative serving for at least a local
timeout period (i.e., the Progress Rep). After becoming
globally and locally constrained, the Progress Rep calls
Get Next To Propose to get an update to propose for
global ordering (Figure A-11, line A4). By Corollary B.31,
there exists an infinite set of views in which, if some
stable server receives an update that it has not previously
executed and no global progress has otherwise occurred,
Get Next To Propose returns an update that has not
previously been executed by any stable server. Thus, the
Progress Rep will invoke ASSIGN-SEQUENCE (Figure A-
11, line A6).

By Lemma B.20, some Progress Rep will have enough
time to globally order the new update if ASSIGN-
SEQUENCE and THRESHOLD-SIGN complete in bounded
time (where THRESHOLD-SIGN is invoked both dur-
ing ASSIGN-SEQUENCE and at the non-leader sites
upon receiving the Proposal). By Lemma B.32, ASSIGN-
SEQUENCE will complete in bounded finite time, and
by Lemma B.33, THRESHOLD-SIGN will be invoked by
all stable servers at the non-leader sites. By Claim B.3,
THRESHOLD-SIGN completes in bounded finite time in
this case. Thus, the Progress Rep will globally order the
update for sequence number (max stable seq + 1). It
will then execute the update and make global progress,
completing the proof.

