小柯机器人

神经元微回路中与衰老相关的稳态控制失调
2023-11-04 17:31

英国哈默史密斯医院Samuel J. Barnes究团队报道了神经元微回路中与年龄相关的稳态控制失调。这一研究成果于2023年11月2日发表在国际顶尖学术期刊《自然—神经科学》上。

他们确定了成人皮层可塑性对感官过度刺激驱动的活动升高的反应,然后测试可塑性如何随年龄变化。我们使用钙介导的细胞/突触活动的体内双光子成像、电生理学和c-Fos活动标记来显示成年后期视觉皮层中神经元活动的控制失调。具体来说,在年轻成人皮层中,过度刺激后,mGluR5依赖性群体范围内的兴奋性突触减弱和抑制性突触发生会降低皮层活动。在以后的生活中,这些机制被下调,因此过度刺激导致突触增强和活动升高。

他们还发现,过度刺激会破坏老年动物的认知能力,而不是年轻动物。他们认为,特定的可塑性机制在晚年的神经微回路稳态失调中失效,而与衰老相关的过度刺激反应可能会影响认知表现。

据悉,神经元内稳态可防止多动症和多动症。与衰老相关的多动症表明,在以后的生活中,体内平衡可能会失调。然而,可塑性机制预防与衰老相关的多动症及其在以后生活中的功效尚不清楚。

附:英文原文

Title: Age-related dysregulation of homeostatic control in neuronal microcircuits

Author: Radulescu, Carola I., Doostdar, Nazanin, Zabouri, Nawal, Melgosa-Ecenarro, Leire, Wang, Xingjian, Sadeh, Sadra, Pavlidi, Pavlina, Airey, Joe, Kopanitsa, Maksym, Clopath, Claudia, Barnes, Samuel J.

Issue&Volume: 2023-11-02

Abstract: Neuronal homeostasis prevents hyperactivity and hypoactivity. Age-related hyperactivity suggests homeostasis may be dysregulated in later life. However, plasticity mechanisms preventing age-related hyperactivity and their efficacy in later life are unclear. We identify the adult cortical plasticity response to elevated activity driven by sensory overstimulation, then test how plasticity changes with age. We use in vivo two-photon imaging of calcium-mediated cellular/synaptic activity, electrophysiology and c-Fos-activity tagging to show control of neuronal activity is dysregulated in the visual cortex in late adulthood. Specifically, in young adult cortex, mGluR5-dependent population-wide excitatory synaptic weakening and inhibitory synaptogenesis reduce cortical activity following overstimulation. In later life, these mechanisms are downregulated, so that overstimulation results in synaptic strengthening and elevated activity. We also find overstimulation disrupts cognition in older but not younger animals. We propose that specific plasticity mechanisms fail in later life dysregulating neuronal microcircuit homeostasis and that the age-related response to overstimulation can impact cognitive performance.

DOI: 10.1038/s41593-023-01451-z

Source: https://www.nature.com/articles/s41593-023-01451-z

Nature Neuroscience:《自然—神经科学》,创刊于1998年。隶属于施普林格·自然出版集团,最新IF:28.771
官方网址:https://www.nature.com/neuro/
投稿链接:https://mts-nn.nature.com/cgi-bin/main.plex


本期文章:《自然—神经科学》:Online/在线发表

分享到:

0