小柯机器人

内嗅速度信号反映环境几何学
2020-01-14 19:55

美国斯坦福大学医学院Lisa M. Giocomo和Robert G. K. Munn研究组合作发现内嗅速度信号反映环境几何学。2020年1月13日,《自然—神经科学》在线发表了这项成果。

速度细胞在改变环境的大小和形状后会重新调节。而且,前进方向细胞以经验依赖性的方式重组,以与环境变化轴一致。敲除小鼠模型可以分离细胞类型之间的协调性,其中网格和速度细胞,而不是前进方向细胞,对环境变化做出响应。这些结果指出多种内嗅细胞类型的编码特征的延展性,暗示了哪些细胞类型提供了网格细胞的计算模型所使用的速度信号。

据悉,内嗅皮层包含代表自我定位的神经元,包括在周期性位置发射的网格细胞和编码跑步速度和前进方向的速度信号。尽管环境的大小和形状会影响网格模式,但是内嗅速度信号是否受到同等影响或是否为跨环境的自运动提供通用度量仍然未知。

附:英文原文

Title: Entorhinal velocity signals reflect environmental geometry

Author: Robert G. K. Munn, Caitlin S. Mallory, Kiah Hardcastle, Dane M. Chetkovich, Lisa M. Giocomo

Issue&Volume: 2020-01-13

Abstract: The entorhinal cortex contains neurons that represent self-location, including grid cells that fire in periodic locations and velocity signals that encode running speed and head direction. Although the size and shape of the environment influence grid patterns, whether entorhinal velocity signals are equally influenced or provide a universal metric for self-motion across environments remains unknown. Here we report that speed cells rescale after changes to the size and shape of the environment. Moreover, head direction cells reorganize in an experience-dependent manner to align with the axis of environmental change. A knockout mouse model allows dissociation of the coordination between cell types, with grid and speed cells, but not head direction cells, responding in concert to environmental change. These results point to malleability in the coding features of multiple entorhinal cell types and have implications for which cell types contribute to the velocity signal used by computational models of grid cells.

DOI: 10.1038/s41593-019-0562-5

Source: https://www.nature.com/articles/s41593-019-0562-5

Nature Neuroscience:《自然—神经科学》,创刊于1998年。隶属于施普林格·自然出版集团,最新IF:28.771
官方网址:https://www.nature.com/neuro/
投稿链接:https://mts-nn.nature.com/cgi-bin/main.plex


本期文章:《自然—神经科学》:Online/在线发表

分享到:

0