小柯机器人

生物系统的场分辨红外光谱分析
2020-01-02 15:19

德国慕尼黑大学Ferenc Krausz、Ioachim Pupeza等研究人员成功实现对生物系统的场分辨红外光谱分析。该项研究成果于2020年1月1日在线发表在《自然》上。

研究人员展示了宽带光学相干在自然环境中对复杂分子集成进行特征识别的应用。振动激发的分子在经过几个周期的红外激光激发之后会发射出相干电场,该电场特定于样品的分子组成。利用电光采样,研究人员直接测量了这种整体分子指纹,其场强比激发的弱了107倍。这样可以透射厚度为0.1毫米的完整生命系统,从而允许对人类细胞和植物叶片进行宽带红外光谱探测。在对人类血清的概念验证分析中,红外电场指纹能够从其激发中暂时隔离出来,并以秒精度进行采样,从而实现每毫升血清亚微克的检测灵敏度以及分子浓度超过105的检测的动态范围。这项技术有望改善分子灵敏度和分子覆盖率,从而得以探测复杂的、实际世界中的生物和医学参数。

据了解,生命系统和生理表型的功能取决于分子组成。然而,同时定量检测多种分子仍然是一个挑战。

附:英文原文

Title: Field-resolved infrared spectroscopy of biological systems

Author: Ioachim Pupeza, Marinus Huber, Michael Trubetskov, Wolfgang Schweinberger, Syed A. Hussain, Christina Hofer, Kilian Fritsch, Markus Poetzlberger, Lenard Vamos, Ernst Fill, Tatiana Amotchkina, Kosmas V. Kepesidis, Alexander Apolonski, Nicholas Karpowicz, Vladimir Pervak, Oleg Pronin, Frank Fleischmann, Abdallah Azzeer, Mihaela igman, Ferenc Krausz

Issue&Volume: 2020-01-01

Abstract: The proper functioning of living systems and physiological phenotypes depends on molecular composition. Yet simultaneous quantitative detection of a wide variety of molecules remains a challenge1,2,3,4,5,6,7,8. Here we show how broadband optical coherence opens up opportunities for fingerprinting complex molecular ensembles in their natural environment. Vibrationally excited molecules emit a coherent electric field following few-cycle infrared laser excitation9,10,11,12, and this field is specific to the sample’s molecular composition. Employing electro-optic sampling10,12,13,14,15, we directly measure this global molecular fingerprint down to field strengths 107 times weaker than that of the excitation. This enables transillumination of intact living systems with thicknesses of the order of 0.1 millimetres, permitting broadband infrared spectroscopic probing of human cells and plant leaves. In a proof-of-concept analysis of human blood serum, temporal isolation of the infrared electric-field fingerprint from its excitation along with its sampling with attosecond timing precision results in detection sensitivity of submicrograms per millilitre of blood serum and a detectable dynamic range of molecular concentration exceeding 105. This technique promises improved molecular sensitivity and molecular coverage for probing complex, real-world biological and medical settings.

DOI: 10.1038/s41586-019-1850-7

Source: https://www.nature.com/articles/s41586-019-1850-7

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html


本期文章:《自然》:Online/在线发表

分享到:

0