小柯机器人

Anisotropic Plasmon Resonance Enables Spatially Controlled Photothermal and Photochemical Effects in Hot Carrier-Driven Catalysis
2024-04-27 15:31

苏州大学何乐团队报道了各向异性等离子体共振,在热载流子驱动催化中实现空间控制的光热和光化学效应。相关研究成果发表在2024年4月25日出版的国际知名学术期刊《中国化学》。

局域表面等离子体共振已被证明在等离子体光催化中提供了有效的光物理增强机制。然而,由于缺乏对其作用的时空控制,不同的机制在催化中协同发挥作用以获得集体收益仍然极具挑战性。

该文中,研究人员利用Au纳米棒的各向异性等离子体共振特性,来实现协同光催化的独特功能。光热和光化学效应分别通过纵向和横向等离子体共振模式实现,并通过二氧化硅纳米壳的部分涂层和反应器组件的外延生长增强。共振激发导致光热介导的热载体驱动的析氢催化中的协同增益。

该方法为等离子体光催化剂实现不同光物理增强机制的时空调制,提供了重要的设计原则。它还有效地拓宽了阳光响应范围,并提高了不同等离子体增强途径对太阳能收集和转换的效率。

附:英文原文

Title: Anisotropic Plasmon Resonance Enables Spatially Controlled Photothermal and Photochemical Effects in Hot Carrier-Driven Catalysis

Author: Jiaqi Wang, Zhijie Zhu, Kai Feng, Shuang Liu, Yuxuan Zhou, Ifra Urooj, Jiari He, Zhiyi Wu, Jiahui Shen, Xu Hu, Zhijie Chen, Xudong Dong, Manzar Sohail, Yanyun Ma, Jinxing Chen, Chaoran Li, Xingda An, Le He

Issue&Volume: 2024-04-25

Abstract: Localized surface plasmon resonance has been demonstrated to provide effective photophysical enhancement mechanisms in plasmonic photocatalysis. However, it remains highly challenging for distinct mechanisms to function in synergy for a collective gain in catalysis due to the lack of spatiotemporal control of their effect. Herein, the anisotropic plasmon resonance nature of Au nanorods was exploited to achieve distinct functionality towards synergistic photocatalysis. Photothermal and photochemical effects were enabled by the longitudinal and transverse plasmon resonance modes, respectively, and were enhanced by partial coating of silica nanoshells and epitaxial growth of a reactor component. Resonant excitation leads to a synergistic gain in photothermal-mediated hot carrier-driven hydrogen evolution catalysis. Our approach provides important design principles for plasmonic photocatalysts in achieving spatiotemporal modulation of distinct photophysical enhancement mechanisms. It also effectively broadens the sunlight response range and increases the efficacy of distinct plasmonic enhancement pathways towards solar energy harvesting and conversion.

DOI: 10.1002/cjoc.202400177

Source: https://onlinelibrary.wiley.com/doi/full/10.1002/cjoc.202400177

分享到:

0