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Despite great progress made in sports medicine, the physiological mechanism of moderate physical activ-
ity-induced physical fitness remains only partly understood. Combined with the hormetic characteristic
of physical activity and property of allostasis, we first propose the hormesis induced allostatic buffering

capacity enhancement as a physiological mechanism to explain the moderate physical activity-induced
physical fitness. As stressful stimulus, physical activity can induce several stresses in the host, including
eustress (‘good stress’) and distress (‘bad stress’), which may have both positive and negative effects. Too
little or too much physical activities will introduce too weak eustress or too strong distress and result in
allostasis load through weakening allostatic buffering capacity or damaging allostatic buffering capacity
respectively. However, moderate physical activities will introduce eustress and contribute to the horme-
sis induced allostatic buffering capacity enhancement, which benefits organism.

© 2009 Elsevier Ltd. All rights reserved.

Introduction

Evidence from different ages, genders and races has revealed
that the change in physical activity is the primary determinant of
physical fitness, and exercise capacity and physical fitness are in-
versely correlated with the all-cause mortality in individuals with
or without cardiovascular disease. However, the physiological
mechanism of physical activity-induced physical fitness remains
only partly understood. The anti-stress training, or termed as “hor-
mesis” as integrated by Calabrese and others [1], in botanies cast
meaningful light on it.

In plant physiology, a common treatment to minimize the harm
of plant to withstand stress conditions is hormesis, that is, placing
the plant in a moderate stress condition and triggering its own de-
fense mechanisms to improve resistance to the stress [2,3]. For
example, a simple and effective method to cultivate drought-resis-
tant rice cultivars is anti-drought training, that is, by drought stress
during the early growth stage, to stimulate the rice to gain an in-
duced drought-resistance [4,5].

Besides botany, there are a large number of results showing that
the hormesis also existed in yeast, nematodes, fruit flies, mamma-
lian, and even human beings [6,7]. Probably, the hormesis of organ-
ism triggered induced-resistance, in a sense, represents the
molecular memory of stress factors, which serves as an important

* Corresponding author. Tel./fax: +86 731 8872786.
E-mail address: hnsdlgl@hunnu.edu.cn (G. Li).
! These two authors contributed equal to this paper.

0306-9877/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mehy.2008.12.037

index of biological organisms different from non-biological organ-
isms at the molecular level.

Could the hormesis also apply to physical activity? What'’s the
physiological mechanism of physical activity-induced physical fit-
ness? To answer these questions, the first and foremost riddle to
solve is whether physical activity itself can be recognized as a
stressful stimulus.

Physical activity, stress and hormesis

Simple muscle contraction can lead to the formation of various
reactive oxygen species (ROS), such as hydroxyl radicals produced
in contracting skeletal muscle of cats [8], superoxide released by
diaphragm myocytes into the interstitium and surrounding med-
ium [9]. During physical activity, a series of stresses, including oxi-
dative stress, ischemic/reperfusion stress and many other stresses
[10,11], would result mainly from energy metabolism and energy
demand. Intense and prolonged physical activity has been shown
to induce a complex stress response, which involves reactions on
the cardiovascular, metabolic, hormonal, and immunological levels
[11,12]. Therefore, the physical activity could be recognized as a
stressful stimulus.

Hormesis is characterized with the basic characteristics of bi-
phasic dose-response, which is low dose stimulation and high dose
inhibition [1,6,13], and now often used refers to the beneficial ef-
fects of low doses of potentially harmful substances [1,6,13]. Con-
sidering that moderate physical activity does assist in maintaining
physical fitness, promoting physiological well-being and strength-
ening the immune system, while prolonged and intense physical
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activity can be harmful [14,15], which is a typical biphasic dose-re-
sponse, it is reasonable to presume the action model of moderate
physical activity is stressful stimulus induced hormesis. For this
reason, Radak and others extended the hormesis theory to explain
the physical activity-induced adaptation, mainly from the perspec-
tive of oxidative stress-related [16].

Physical activity and ABC
Allostasis and ABC

About 20 years ago, Sterling and Eyer coined allostasis from the
Greek ‘Allo’ meaning ‘variable’, and ‘stasis’ meaning ‘stable’. Thus
allostasis means ‘remaining stable by being variable’ [17], that is,
maintaining stable through multi-point. Since in organisms, espe-
cially higher animals, the stability of internal milieu is associated
with many rhythms, such as daily rhythm of body temperature,
daily rhythmic secretion of serotonin, melatonin, adrenocorticotro-
pic hormone (ACTH) and other hormones and many other rhythms,
it is reasonable to think allostasis as a more accurate concept of
homeostasis (remaining stable by staying the same).

Based on the multi-point property of allostasis, we could image
the allostatic system as a special ‘buffering system’: it has a basal
level and certain buffering capacity that could maintain dynamic
stability (Fig. 1A). Therefore, we coined the term of ‘allostatic buf-
fering capacity (ABC) with five components: that is, basal level,
peak level, buffering range, increase rate and recovery rate, to give
a good picture of the capacity of allostatic system to maintain dy-
namic stability (Fig. 1).
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The action model of physical activity to ABC

Different physical activities play different roles in ABC. Accord-
ing to the difference of intensity, three situations are associated
with the role of physical activity to ABC.

The first is moderate physical activity-induced ABC enhance-
ment (Fig. 1C). It has been widely accepted in sports medicine that
moderate physical activity can improve the allostasis of heart, lung
and many organs. Take heart rate, the simplest parameter of heart
function, as an example. In comparison to untrained people, well-
trained people generally have lower basal heart rate, and when
they participate in the same intensity of physical activity, the heart
rates of well-trained people will increase more slowly [18] and can
arrive at higher peak heart rate (more close to the predicted max-
imum heart rate) depending on the intensity of physical activity.
After the cessation of physical activity, their heart rates recover
to the basal rate more rapidly [19,20], which from the point of allo-
stasis is moderate activity enhanced all five components of ABC
(Fig. 1C).

The second is inadequate physical activity weakened ABC
(Fig. 1B). As we have known, aging is often defined as a process
of age-related loss in the capacity of maintaining allostasis [21].
Evidences also show that inadequate stimuli induce inadequate
signals output from the nervous system or neuroendocrine system,
and inadequate signals input is one of the important causes of
amyotrophy [22]. It may be the reason that persons of sedentary
lifestyles or seldom participating in physical activity usually show
an age-related weakening in ABC and have higher basal heart rate,
lower peak rate, narrower buffering range, more rapidly increasing

Enhanced ABC C

Damaged ABC D

Fig. 1. The action model of physical activity to ABC. (A) illustrates the normal ABC constituted with basal level, peak level, buffering range (the range between basal and peak
level), increase rate and recovery rate. The allostasis can maintain dynamic stability in the buffering range with normal rate when responses to certain stressful stimulus and
can recover to the basal level after the cessation of stressful stimulus. The remaining panels (B, C and D) illustrate the three changes of ABC resulting from different lifestyles
respectively: inadequate physical activity weakened ABC (B), moderate physical activity enhanced ABC (C) and intense and prolonged physical activity damaged ABC (D).
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rate and more slowly recovery rate. This process can be defined as
‘allostasis load’ according to the opinion of McEwen [23,24].

The third is intense and prolonged physical activity breaks the
ABC, and the special characteristic of it is, if not lacking, at least dif-
ficult to recover to basal level (Fig. 1D). It can also be defined as
‘allostasis load’ [23,24]. For instance, intense and prolonged phys-
ical activity could induce sympathetic and HPA-axis activity main-
tain in a higher level, resulting in weight loss, amenorrhea, and the
often-related condition of anorexia nervosa [25].

Examples and performances of physical activity to ABC
Oxidative stress

The best-studied example of physical activity and ABC is oxida-
tive stress. The oxidative stress was classically defined as an imbal-
ance between the production of oxidations and the occurrence of
cell antioxidant defenses by Helmut Sies in 1985 [26], and as a dis-
ruption of redox signaling and control by Dean P. Jones in 2006
[27]. However, with the advance in the concepts of allostasis [17]
and allostasis load [23], we would prefer to consider it as a disturb-
ing status of redox allostasis.

As reviewed elsewhere [28-30], physical activity, especially in-
tense and prolonged physical activity, can cause a marked increase
in the ROS and reactive nitrogen species (RNS) mainly from mito-
chondria, nonphagocytic NAD(P)H oxidase (NOX), xanthine oxi-
dase or phagocytes. ROS and RNS, at high concentrations are
hazardous for living organisms and damage all major cellular con-
stituents, including proteins, lipids and nucleic acids, and result in
oxidative stress, while at moderate concentrations play an impor-
tant role as regulatory mediators in signaling processes and as ini-
tiators in reestablishing “redox allostasis” [31-33].

Regular moderate physical activity can promote mitochon-
drial biogenesis and enhance muscle oxidative capacity [34-
36], and the molecular signals that drive mitochondrial biogene-
sis as a component of myofiber adaptation to increased muscle
usage are mainly the increased ROS and RNS, such as hydrogen
peroxide (H,0O,) and nitric oxide (NO) [34,35,37]. In addition,
regular physical activity can decrease ROS production through
reducing the electronic leakage with more well-regulated mito-
chondrial electron-transport chain [38] and higher pool of func-
tional mitochondria [39], which is critical to delay the onset and
progressive course of age-related diseases [40]. Based on these, it
is clear that regular moderate physical activity can enhance the
redox ABC from lowering the basal level and increasing the oxi-
dative buffering range.

Though the effects of regular physical activity on the total radical
trapping antioxidant potential (TRAP), catalase (CAT) activity and
glutathione peroxidase (GPX) activity have been inconsistent and
controversial, in particular Sharpe and others have illustrated that
regular physical activity cannot directly increase the TRAP in serum
as index by the concentrations of urate, protein thiols, ascorbate, al-
pha tocopherol and bilirubin [41], the superoxide dismutase (SOD)
activity has consistently been shown to increase with physical
activity in an intensity-dependent manner [42]. In addition, ample
evidences have indicated that regular physical activity can increase
the activity of proteasome complex, which increase the degradation
and turnover rate of oxidative modified proteins [43,44].

In short, in comparison with sedentary, regular physical activity
can enhance the redox ABC that: (a) is from lowering the basal ROS
level through reducing ROS production, decreasing resting respira-
tion rate and reestablishing redox allostasis, (b) is from increasing
the peak level and oxidative buffering range by promoting mito-
chondrial biogenesis, and (c) is from decreasing the oxidative
stress rate and increasing recovery rate by reestablishing redox
allostasis and enhancing antioxidant defensive system and damage
repair system. In contrast, intense and prolonged physical activity
may damage redox ABC.

Cardiorespiratory system

Many factors attribute to exercise capacity, and the function of
cardiorespiratory system, especially the delivery of oxygen to mus-
cles is the determinant factor [45,46]. Therefore, the direct effect of
physical activity on exercise capacity, in fact, is the effect on car-
diorespiratory system.

As addressed above, the physical activities have typical hormet-
ic effects on the heart rate profile, and the beneficial effect of mod-
erate physical activity on heart rate profile is typical mild stressful
stimuli induced ABC enhancement. Though arguments still exist
whether heart rate can be served as a predictor of cardiorespira-
tory-related mortality [47,48] and present results only support it
to predict mortality from the heart rate recovery after treadmill
exercise testing [49,50], numerous investigations have established
a strong association between the heart rate profile and the cardio-
vascular functions and exercise capacity [51,52].

Beside the heart rate profile, though other adaptations of exer-
cise capacity-related have not been fully studied from all five com-
ponents of ABC, they show an obvious hormetic effect on physical
activities. Physical inactivity or sedentariness is associated with
low cardiorespiratory fitness and increased prevalence of CVD risk
factors [53]. Moderate physical activity can not only improve car-
diorespiratory fitness in a strong dose-dependent fashion [51,54],
promote angiogenesis through overexpression of angiogenic fac-
tors [55], promote vasodilatation by increasing basal production
of nitric oxide [56], prevent from age-related decline in oxygen
delivery capacity of red blood cell [57], and lower basal resting
heart rate and blood pressure through reducing sympathetic activ-
ity and/or increasing parasympathetic tonus [58], but also reduce
the morbidity and mortality of cardiovascular diseases, such as
heart failure [59], coronary heart disease (CHD) [60,61] and hyper-
tension [62]. In contrast, intense and prolonged physical activity,
such as marathon, may result in some damage to cardiorespiratory
systems, including hypertension, endothelial dysfunction, coronary
artery disease [63], intestinal ischemia [10], and exacerbating brain
damage caused by in vitro ischemia, oxygen and glucose depriva-
tion [64,65]. Thus, Blair research group has suggested that physical
activity status is the determinant factor and is primarily responsi-
ble for cardiorespiratory fitness [51,66], and more detailed investi-
gations are needed to be conducted from all five components of
ABC to disclose the more detailed mechanism of physical activities
to cardiorespiratory fitness.

Immune system

The immune system is a remarkably effective allostatic buffer-
ing system that the body healthy and protects the body from po-
tential threats by recognizing and responding to molecular
antigens and non-living antigens [11]. According to stress-immu-
nology, stress can induce antigen-specific cell-mediated immunity
[67] and induce a long-lasting increase in immunologic memory
[68], which may serve as an early warning signal and help prepare
the immune system for potential threats [69].

Physical activity, as a type of stressful stimulus, can introduce
several threats to the allostasis of the host, which may mimic as
antigens and stimulate several immune responses. Some of the im-
mune responses may benefit immune function; some may not,
depending on the intensity and amount of physical activity. Mod-
erate physical activity is the most important strategy to enhance
immune ABC and offset age-related decline in immune function
in the elderly [70], whereas intense and prolonged physical activity
can result in immune dysfunction [71].

Evidences from epidemiology or susceptibility to infection sug-
gest that the physical activity plays hormetic role on immune sys-
tem. For example, Nieman models the relationship between
physical activity and the resistance to upper respiratory tract infec-
tion (URTI) as a “J”-shape curve [72]. Research data also shows that
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Fig. 2. The framework of physical activity acting on physical fitness and health. Physical activity is a stressful stimulus. Different amounts of physical activity can induce
different effects on the host. Moderate physical activity may introduce eustress and result in ABC enhancing, physical fitness increasing, health improving and morbidity and
mortality reducing in sequence (green column). In contrast, inadequate or excessive physical activity will lead to allostasis load through inadequate eustress induced ABC
weakening (yellow column) or distress induced ABC damage (orange column), respectively, and subsequently threatens physical fitness and health (red column). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

regular moderate physical activity can accelerate wound healing
[73], increase resistance to influenza virus [74], reduce inappropri-
ate inflammation [73,75] and decrease incidence of infection [76],
whereas high intensity or long duration of physical activity can
suppress immune function and increase susceptibility to infections
[76,77].

Recent studies have demonstrated that the alterations in im-
mune allostatic parameters may account for the hormetic effect
of physical activity on immune system. Moderate physical activity
can induce mild stress, which can enhance immune surveillance
and vigilance [78], mainly through changing proportional distribu-
tion of lymphocyte subpopulations and increasing natural killer
(NK) cell cytotoxicity, circulatory lymphocyte counts and func-
tions, and immunoglobulins [76,78]. It is a typical hormesis in-
duced immune ABC enhancement. In contrast, intense and
prolonged physical activity may suppress the functions of all im-
mune cells and increase in plasma cytokines and stress hormones
[77,79-81], such as suppressing the chemotaxis of neutrophil [80]
and the mitochondrial energy status of peripheral blood leucocytes
[81], increasing in the rate of leucocytes apoptosis [79] and sup-
pressing the NK cell function and IgA output [77].

In sum, the effect of physical activity on the immune system is a
typical hormetic process. In comparison to a sedentary lifestyle,
regular moderate physical activity can induce immune ABC en-
hance and arouse its surveillance and vigilance, whereas intense
and prolonged physical activity may result in immune ABC damage
and immune system dysfunctions.

Whole-body

Studies in asymptomatic populations have revealed that physi-
cal activity can promote exercise capacity and physical fitness, and
subsequently reduce all-cause mortality and make assurance of
survival and longevity [20]. In fact, this process is an ABC enhance-
ment by increasing resistance to the stress stimuli of physical
activity and by reinforcing the capacity to deal with the stress
stimuli, if we regard the whole body of human as a buffering sys-

tem. That is to say, the health benefits of physical activity are
achieved by enhancing ABC.

Conclusion and perspectives

The available data strongly indicates that physical activity plays
an important role in physical fitness. Considering the hormetic
characteristic of physical activity and property of allostasis, we first
propose that the physiological mechanism of moderate physical
activity-induced physical fitness is a ‘hormesis induced ABC
enhancement’. It will serve as a framework for organizing the cur-
rent understanding of the physical activity into a unifying and test-
able concept.

Hormesis is a biphasic dose-response phenomenon primarily
found in toxicology, and now is often used to refer to the beneficial
effects of low dose stressful stimulus and has been widely ex-
tended to many fields [1,6,13]. However, how do low dose stressful
stimuli benefit organisms? Or what’s the physiological process of
hormesis? It still is a Pandora’s Box. At the same time, since Ster-
ling and Eyer coined the concept of allostasis to discourse the sta-
bility of internal milieu, McEwen has defined the harmful effects of
stressful stimuli as allostasis load and established the action mod-
els [23,24], while there is lacking action models to describe the
beneficial effects of low dose stressful stimuli. The hormesis in-
duced ABC enhancement discoursed in this paper can complete an-
other piece of the jigsaw puzzle of allostasis and serve as a
physiological process of hormesis.

As stressful stimulus, physical activity can induce several stres-
ses in the host, including eustress (‘good stress’) and distress (‘bad
stress’) [7], which may have both positive and negative effects. Too
little or too much physical activities will introduce too weak eus-
tress or too strong distress and result in allostasis load through
weakening ABC or damaging ABC respectively. However, moderate
physical activities will introduce eustress and contribute to the
hormesis induced ABC enhancement, which benefits organism
(Fig. 2).
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Although the amount of evidence supporting the concept that
physical activity is one of the most important steps to improve
physical fitness, the change in allostasis and the detailed physio-
logical process of physical fitness induced by moderate physical
activity have seldom been reported. The lack of logical hypothesis
may be responsible for it. Based on available evidences, we find the
model of stress induced ABC change is useful to explain the phys-
iological process of physical activities, and the hormesis induced
ABC enhancement may serve as the physiological mechanism of
the moderate physical activity-induced physical fitness. According
to this hypothesis, it is reasonable to consider that the effects of
physical activities on different systems may owe to the changes
either in one or some or all of the five components of the allostatic
buffering system, which is necessary for further investigations to
focus on, aiming to demonstrate the basic principle of physical
activity.
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