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A central issue in the study of polymer physics is to understand the relation between the geometrical
properties of macromolecules and various dynamics, most of which are encoded in the Laplacian
spectra of a related graph describing the macrostructural structure. In this paper, we introduce a fam-
ily of treelike polymer networks with a parameter, which has the same size as the Vicsek fractals
modeling regular hyperbranched polymers. We study some relevant properties of the networks and
show that they have an exponentially decaying degree distribution and exhibit the small-world behav-
ior. We then study the Laplacian eigenvalues and their corresponding eigenvectors of the networks
under consideration, with both quantities being determined through the recursive relations deduced
from the network structure. Using the obtained recursive relations we can find all the eigenvalues and
eigenvectors for the networks with any size. Finally, as some applications, we use the eigenvalues to
study analytically or semi-analytically three dynamical processes occurring in the networks, includ-
ing random walks, relaxation dynamics in the framework of generalized Gaussian structure, as well
as the fluorescence depolarization under quasiresonant energy transfer. Moreover, we compare the
results with those corresponding to Vicsek fractals, and show that the dynamics differ greatly for the
two network families, which thus enables us to distinguish between them. © 2013 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4794921]

I. INTRODUCTION

A fundamental issue in the study of complex systems is
to unveil how the structural properties affect various dynam-
ics, many of which are related to the exact knowledge of the
eigenvalues and eigenvectors of Laplacian matrix. Examples
include relaxation dynamic in the framework of generalized
Gaussian structure (GGS),1 fluorescence depolarization by
quasiresonant energy transfer,2, 3 standard discrete-time ran-
dom walks,4 and continuous-time quantum walks,5, 6 and so
on. In addition to dynamical processes, Laplacian eigenvalues
and eigenvectors are also relevant to diverse structural aspects
of complex systems, such as spanning trees7 and resistance
distance.8 Thus, it is of theoretical interest and practical im-
portance to derive exact analytical expressions of Laplacian
eigenvalues and eigenvectors for complex systems, which can
lead to extensive insights in the contexts of topologies and
dynamics.

Given the wide range of applicability, the study of Lapla-
cian eigenvalues and eigenvectors has been subject of con-
siderable research endeavor for the past few decades. Thus
far, the Laplacian eigenvalues for some classes of graphs
have been determined exactly, including regular hypercubic
lattices,1, 9 dual Sierpinski gaskets,10, 11 Vicsek fractals,12, 13

dendrimer also known as Cayley tree,14 and Husimi cacti.15, 16

Recent empirical research indicated that some real-life net-
works (e.g., power grid) display small-world behavior.17, 18

a)Electronic mail: zhangzz@fudan.edu.cn. URL: http://www.researcherid.
com/rid/G-5522-2011.

Moreover, these networks are simultaneously characterized
by an exponentially decaying degree distribution,18 which
cannot be described by the above-mentioned networks. How-
ever, related work about Laplacian eigenvalues and eigen-
vectors for small-world exponential networks is much less,
notwithstanding the ubiquitous nature of such systems.

In this paper, we define a category of treelike polymer
networks controlled by a parameter, which is built in an iter-
ative way. The networks have the same size as that of Vicsek
fractals19, 20 corresponding to the same parameter and
iteration. According to the construction, we study some struc-
tural properties of the networks, showing that they have an
exponentially decaying degree distribution, and display the
small-world property. Moreover, the networks can be assor-
tative, uncorrelated, or disassortative, relying on the parame-
ter. Then, by applying the technique of graph theory and an
algebraic iterative procedure, we study the Laplacian eigen-
values and eigenvectors of the networks, obtaining recursive
relations for the eigenvalues and eigenvectors, which allow
for determining exactly the full eigenvalues and eigenvectors
of networks of arbitrary size.

In the second part of this work, by making use of the ob-
tained Laplacian eigenvalues, we study three classic dynam-
ics for the small-world polymer networks, such as trapping
with a single trap, relaxation dynamics in the GGS frame-
work, and the fluorescence depolarization under quasireso-
nant energy transfer. For the trapping problem, we study two
particular cases: in the first case the trap is fixed at the central
node, while in the other case the trap is distributed uniformly.
For both cases, we derive explicit formulas for the average
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trapping time and obtain their leading scalings, which follow
different behaviors, showing that the position of trap has a
substantial effect on the trapping efficiency. For the GGS, we
determine three interesting quantities related to the relaxation
dynamics, i.e., the averaged monomer displacement, storage
module, and loss module. Finally, we display the behavior
of the fluorescence depolarization. For the three dynamics,
we also present a comparison for the behaviors between the
small-world polymer networks and Vicsek fractals, and show
that they differ strongly.

II. NETWORK CONSTRUCTION AND PROPERTIES

In this section, we first introduce a family of treelike
small-world polymer networks with an exponential degree
distribution, then we study some relevant properties of the
networks.

A. Construction method

The networks being studied have a treelike structure, and
are constructed in a deterministically iterative way. Let Ug

(g ≥ 0) denote the networks after g iterations. For g = 0, U0

consists of an isolated node, called the central node. For g = 1,
f (f is a positive integer) new nodes are generated connecting
the central node to form U1. For g ≥ 1, Ug is obtained from
Ug−1 by attaching f new nodes to each node in Ug−1. Figure 1
illustrates schematically the first several iterative construction
processes of a particular network for the case of f = 3.

According to the construction approach, it is easy to de-
rive that at each iterative step gi (gi ≥ 1), the number of newly
generated nodes is L(gi) = f (f + 1)gi−1. Then the total num-
ber of nodes at each generation g is

Ng = 1 +
g∑

gi=1

L(gi) = (f + 1)g, (1)

FIG. 1. Construction of a special network corresponding to f = 3.

FIG. 2. Second construction method of the small-world polymer networks.
Ug consists of f + 1 copies of Ug−1, denoted by U

(0)
g−1, U (1)

g−1, U (2)
g−1, . . . ,U (f )

g−1,
which are connected to each other to form Ug by adding a new edge between

the central node of each U
(i)
g−1 (i = 1, 2, . . . , f) and the central node of U

(0)
g−1.

and the total number of edges in Ug is Eg = Ng − 1
= (f + 1)g − 1.

In fact, the networks being studied are self-similar, which
can be seen from another construction approach. As will be
shown below, the central node of Ug has the largest degree,
we thus also call it hub node. Let hg denote the central node
of Ug. Then, Ug can be constructed alternatively as follows,
highlighting its self-similarity, see Fig. 2. To generate Ug, we
create f + 1 replicas of Ug−1, and label them as U

(0)
g−1, U

(1)
g−1,

U
(2)
g−1, . . . , U

(f )
g−1, respectively. Moreover, let h

(x)
g−1 (x = 0, 1, 2,

. . . , f) denote the hub of the U
(x)
g−1. Then, for each U

(i)
g−1 (i = 1,

2, . . . , f), we introduce an additional edge connecting its hub
node h

(i)
g−1 to the node h

(0)
g−1. Thus, through the two steps of

replication and connection, we obtain Ug with h
(0)
g−1 being its

hub.
Note that the numbers of nodes and edges of the net-

works under consideration are identical to those correspond-
ing to Vicsek fractals,19, 20 but their structural properties differ
greatly from those of Vicsek fractals, as we will show.

B. Structural properties

We proceed to present some important structural proper-
ties of Ug, including degree distribution, average path length,
diameter, and degree correlations.

1. Degree distribution

For a network, its degree distribution P(k) is defined as
the probability that a randomly chosen node has a degree of
k. Let ki(g) be the degree of node i in Ug. Assume that node
i entered the networks at generation gi (gi > 0), then ki(gi)
= 1. By construction, at each subsequent iteration, f new
nodes will be generated linking to node i. Thus, the degree
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of node i evolves as

ki(g) = ki(g − 1) + f. (2)

Considering ki(gi) = 1, Eq. (2) is solved to yield

ki(g) = 1 + f (g − gi), (3)

which provides the degrees of all nodes except the central one.
We label the initial central node by 0; then the degree of node
0 in Ug is

k0(g) = fg, (4)

which is the highest among all nodes.
Equations (3) and (4) show that the degree spectrum of

Ug is discrete and that all nodes generated at the same gen-
eration have the same degrees. Thus, in Ug, the number of
possible node degrees is g + 1, which is in sharp contrast to
that for Vicske fractals, where only three types of degrees ex-
ist, that is, 1, 2, and f. It follows that the cumulative degree
distribution21 of the networks addressed is given by

Pcum(k) =
∞∑

k′=k

P (k′). (5)

Using Eq. (3), we have Pcum(k) = ∑∞
k′=k P (k′)

= P (g′ ≤ φ = g − k−1
f

). Hence,

Pcum(k) =
φ∑

g′=0

L(g′)
Ng

= (f + 1)g− k−1
f

(f + 1)g
= (f + 1)−

k−1
f , (6)

which decays exponentially with k. It is the same with degree
distribution P(k), see Ref. 21 for explanation.

2. Average path length

The average path length represents the average of length
of the shortest path between two nodes over all node pairs.
Assume that each edge in Ug has a unit length. Then the length
of the shortest path between nodes i and j in Ug, denoted by
dij(g), is the minimum length for the path connecting the two
nodes. Let d̄g represent the average path length of Ug, defined
by

d̄g = Stot(g)

Ng(Ng − 1)/2
, (7)

where Stot(g) is the sum of dij(g) over all pairs of nodes, i.e.,

Stot(g) =
∑
i �=j

dij (g). (8)

We note that in Eq. (8), for a pair of nodes i and j (i �= j), we
only count dij(g) or dji(g), not both.

Let �̄g and �g the sets of nodes generated at iteration g
or earlier, respectively. Then Stot(g) can be recast as

Stot(g)=
∑

i∈�̄g, j∈�g

dij (g)+
∑

i∈�̄g, j∈�̄g

dij (g)+
∑

i∈�g, j∈�g

dij (g),

(9)
It is evident that the third term on the right-hand side (rhs) of
Eq. (9) is exactly Stot(g − 1), i.e.,∑

i∈�g, j∈�g

dij (g) = Stot(g − 1). (10)

For the first two terms on the rhs of Eq. (9), accord-
ing to the first network construction method, they can be
evaluated as∑

i∈�̄g, j∈�g

dij (g) = f [(Ng−1)2 + 2 Stot(g − 1)] (11)

and∑
i∈�̄g, j∈�̄g

dij (g) = f 2 Stot(g − 1) + f Ng−1(f Ng−1 − 1),

(12)

respectively.
Plugging Eqs. (10)–(12) into Eq. (9) leads to

Stot(g)= (f + 1)2 Stot(g − 1) + f (f + 1)(Ng−1)2 − f Ng−1

= (f + 1)2 gStot(0) + f (f + 1)

×
g−1∑
i=0

[(f + 1)2 (g−1−i)(Ni)
2]

− f

g−1∑
i=0

[(f + 1)2 (g−1−i)Ni]. (13)

Substituting Stot(0) = 0 and Ni = (f + 1)i into Eq. (13), we
can obtain the exact expression for Stot(g) as

Stot(g) = (fg − 1)(f + 1)2g−1 + (f + 1)g−1. (14)

Inserting Eq. (14) into Eq. (7) gives

d̄g = (fg − 1)(f + 1)2g−1 + (f + 1)g−1

(f + 1)g[(f + 1)g − 1]/2

= 2(fg − 1)(f + 1)g + 2

(f + 1)g+1 − (f + 1)
. (15)

Recalling Ng = (f + 1)g as given in Eq. (1), we have g
= ln Ng/ln (f + 1), both of which enable us to write d̄g in terms
of network size Ng as

d̄g = 2(f ln Ng/ ln(f + 1) − 1)Ng + 2

(f + 1)Ng − (f + 1)

= 2f

(f + 1) ln(f + 1)

Ng ln Ng

Ng − 1
+ 2

f + 1

1

Ng − 1
. (16)

When the network size is large enough, we have

d̄g
∼= 2f

(1 + f ) ln(1 + f )
ln Ng, (17)

which increases logarithmically with the network size
g, showing that the networks display the small-world
behavior.17

3. Diameter

We have shown that the treelike polymer networks are
small-world, since their average path length grows as a loga-
rithmic function of network size. In addition to average path
length, sometimes, diameter is also used to characterize the
small-world phenomenon, since small diameter is consistent
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with the concept of small-world. For a network, its diameter
is defined as the maximum of the shortest distances between
all pairs of nodes in the network. Let diam(Ug) denote the di-
ameter of Ug, below we will compute analytically diam(Ug)
and show that it also scales logarithmically with the network
size.

Clearly, at step g = 1, diam(U1) equals 2. At each iter-
ation g ≥ 1, we call newly generated nodes at this iteration
active nodes. Since all active nodes are connected to those
nodes existing in Ug−1, it is easy to see that the maximum
distance between an arbitrary active node and those nodes in
Ug−1 is not more than diam(U1) + 1, and that the maximum
distance between any pair of active nodes is at most diam(U1)
+ 2. Hence, at any iteration, the diameter of the network in-
creases by 2 at most. Then we get 2(g + 1) as the diameter
of Ug, which is equal to 2(logf+1Ng + 1) growing logarith-
mically with the network size. This again indicates that the
networks under study are small-world.

4. Degree correlations

For a network, its degree correlations22 can be described
by the Pearson correlation coefficient r, which is in the in-
terval [− 1, 1]. If the network is uncorrelated, r equals zero.
Disassortative networks have r < 0, while assortative graphs
have r > 0. Let r(f, g) be the Pearson degree correlation

coefficient of Ug. By definition, r(f, g) is given by

r(f, g) = Eg

∑
i jiki − [∑

i
1
2 (ji + ki)

]2

Eg

∑
i

1
2 (j 2

i + k2
i ) − [∑

i
1
2 (ji + ki)

]2 , (18)

where ji and ki are the degrees of the nodes at the two ends of
the ith edge in Ug, where i ∈ {1, 2, . . . , Eg}.

The three terms in numerator and denominator in Eq. (18)
can be evaluated as∑

i

ji ki = (3f + 7)(f + 1)g − 2f 2g2 − 7fg − 3f − 7,

(19)

∑
i

1

2
(ji + ki) = −1

2
(f + 5)(f + 1)g + 2fg + 1

2
(f + 5),

(20)
and∑

i

1

2
(j 2

i + k2
i ) = 1

2
(f 2 + 9f + 16)(f + 1)g − 3f 2g2

−1

2
(3f 2 + 15f ) − 1

2
(f 2 + 9f + 16),

(21)

respectively. Inserting Eqs. (19)–(21) and Eg = (f + 1)g

− 1 into Eq. (18), we can arrive at the explicit expression for
r(f, g) as

r(f, g)= 2f [(f + 1)g − 1][(f + 1)g + 6g − 1] − f 2[(f + 1)g − 1]2 + 3[(f + 1)g − 1]2 + 8g[(f + 1)g(g − 1) + g + 1]

(f + 1)2g+1(f + 7) − 2f (f + 1)g[f + 8 − (f + 5)g + 6f g2] − 14(f + 1)g + f [f + 8 − 2(f +5)g−4f g2]+7
.

(22)

In Fig. 3, we report the exact result for r(f, g) provided by
Eq. (22). From Fig. 3, it is obvious that for f = 1, 2, r(f, g) is
positive; for f = 3, r(f, g) equals zero; while for f ≥ 4, r(f, g)
is negative.

FIG. 3. Pearson correlation coefficient r(f, g) of Ug as a function of f and g.

Equation (22) shows that for very large g, we have

r(f, g) 	 (f + 1)2g(−f 2 + 2f + 3)

(f + 1)2g(f 2 + 8f + 7)

= −f − 3

f + 7
, (23)

which decreases with f. When f = 1 and f = 2, r(f, g) is equal
to 1

4 and 1
9 , respectively. Thus, for f = 1 and f = 2, Ug is

assortative. When f = 3, r(f, g) is equal to 0, indicating that the
network is uncorrelated. When f ∈ [4, ∞), r(f, g) is negative.
Concretely, when f increases from 4 to ∞, r(f, g) decreases
from − 1

11 to −1, showing that Ug is disassortative.
The phenomenon that the Pearson degree correlation co-

efficient r(f, g) decreases with f can be explained heuristically
as follows. Note that there are Eg = (f + 1)g − 1 edges in
Ug, which means that for those Ng−1 = (f + 1)g−1 old nodes
having a degree higher than one, they have 2Eg−1 + L(g)
= (f + 2)(f + 1)g−1 − 2 neighboring nodes, among which L(g)
= f(f + 1)g−1 neighbors are those newly generated nodes with
a single degree. Thus, for large g, the fraction of neighbors
with single degree is approximatively equal to f/(f + 2), which
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is an increasing function of f, meaning that in networks cor-
responding to larger f, the average degree of neighbors of old
nodes is smaller.

III. LAPLACIAN EIGENVALUES AND THEIR
CORRESPONDING EIGENVECTORS

Although for general graphs, it is a challenge to deter-
mine their Laplacian eigenvalues and eigenvectors, as will be
shown, for Ug this problem can be settled.

A. Eigenvalues

Let Ag = [Aij ](f +1)g×(f +1)g denote the adjacency matrix
of Ug, where Aij = Aji = 1 if nodes i and j are adjacent,
Aij = Aji = 0 otherwise, then the degree of node i is di

= ∑
j∈Ug

Aij . Let Dg = diag(d1, d2, . . . , d(f +1)g ) denote the
diagonal degree matrix of Ug, then the Laplacian matrix of
Ug is defined by Lg = Dg − Ag .

We first study the eigenvalues of Ug, leaving the eigen-
vectors to Subsection III B. By construction, it is easy to see
that Ag and Dg obey the following relations:

Ag =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ag−1 Ig−1 Ig−1 · · · Ig−1

Ig−1 0 0 · · · 0
Ig−1 0 0 · · · 0

...
...

...
. . .

...

Ig−1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠ (24)

and

Dg =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dg−1 + f Ig−1 0 0 · · · 0

0 Ig−1 0 · · · 0

0 0 Ig−1 · · · 0

...
...

...
. . .

...

0 0 0 · · · Ig−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

in which each block is a (f + 1)g−1 × (f + 1)g−1 matrix and
Ig−1 is the (f + 1)g−1 × (f + 1)g−1 identity matrix. Thus, the
Laplacian matrix of Ug satisfies the following recursive rela-
tion:

Lg = Dg − Ag

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Lg−1 + f Ig−1 −Ig−1 −Ig−1 · · · −Ig−1

−Ig−1 Ig−1 0 · · · 0

−Ig−1 0 Ig−1 · · · 0

...
...

...
. . .

...

−Ig−1 0 0 · · · Ig−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(26)

Obviously, the problem of determining Laplacian eigen-
values of Ug is equivalent to finding the roots of characteristic
polynomial Pg(λ) of Lg . To find the eigenvalues of Lg , we just
need to determine the roots of Pg(λ), which read

Pt (λ) = det(λIg − Lg)

= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(λ − f )Ig−1 − Lg−1 Ig−1 Ig−1 · · · Ig−1

Ig−1 (λ − 1)Ig−1 0 · · · 0

Ig−1 0 (λ − 1)Ig−1 · · · 0

...
...

...
. . .

...

Ig−1 0 0 · · · (λ − 1)Ig−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= {det[(λ − 1)Ig−1]}f · det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(λ − f )Ig−1 − Lg−1 Ig−1 Ig−1 · · · Ig−1

1
λ−1 Ig−1 Ig−1 0 · · · 0

1
λ−1 Ig−1 0 Ig−1 · · · 0

...
...

...
. . .

...
1

λ−1 Ig−1 0 0 · · · Ig−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= {det[(λ − 1)Ig−1]}f · det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(λ − f − f

λ−1 )Ig−1 − Lg−1 0 0 · · · 0
1

λ−1 Ig−1 Ig−1 0 · · · 0
1

λ−1 Ig−1 0 Ig−1 · · · 0

...
...

...
. . .

...
1

λ−1 Ig−1 0 0 · · · Ig−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (27)
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where we have used the elementary operations of matrix.
Based on the results in Ref. 23, Pg(λ) can be expressed
as

Pg(λ) = {det[(λ − 1)Ig−1]}f

× det

[(
λ − f − f

λ − 1

)
Ig−1 − Lg−1

]
. (28)

Hence, Pg(λ) can be further recast recursively as

Pg(λ) = (λ − 1)f (f +1)g−1
Pg−1(ϕ(λ)), (29)

where ϕ(λ) = λ − f − f

λ−1 . This recursion relation provided
in Eq. (29) is very useful for determining the eigenvalues and
eigenvectors of the Laplacian matrix for Ug. Note that Pg−1(λ)
is a monic polynomial of degree (f + 1)g−1, then the exponent
of f

λ−1 in Pg−1(ϕ(λ)) is (f + 1)g−1, and the exponent of factor
(λ − 1) in Pg(λ) is

f (f + 1)g−1 − (f + 1)g−1 = (f − 1)(f + 1)g−1. (30)

Therefore, Ug has Laplacian eigenvalue 1 with multiplicity
(f − 1)(f + 1)g − 1.

It is evident that Ug has (f + 1)g Laplacian eigenvalues,
denoted by λ

g

1, λ
g

2, . . . , λ
g

(f +1)g , the set of which is represented
by �g, i.e., �g = {λg

1, λ
g

2, . . . , λ
g

(f +1)g }. In addition, without
loss of generality, we assume that λ

g

1 ≤ λ
g

2 ≤ . . . ≤ λ
g

(f +1)g .
On the basis of above analysis, �g can be divided into two
subsets �(1)

g and �(2)
g , such as �g = �(1)

g ∪ �(2)
g . �(1)

g contains
all eigenvalues equal to 1, while �(2)

g includes the remaining
eigenvalues. Thus,

�(1)
g = {1, 1, 1, . . . , 1, 1}︸ ︷︷ ︸

(f −1)(f +1)g−1

, (31)

where the distinctness of elements is neglected.
The remaining 2(f + 1)g−1 eigenvalues belonging to

�(2)
g are determined by Pg−1(ϕ(λ)) = 0. Let the 2(f + 1)g−1

eigenvalues be λ̃
g

1, λ̃
g

2, . . . , λ̃
g

2(f +1)f −1 , respectively. That is,

�(2)
g = {λ̃g

1, λ̃
g

2, . . . , λ̃
g

2(f +1)g−1}. For convenience, we assume

that λ̃
g

1 ≤ λ̃
g

2 ≤ . . . ≤ λ̃
g

2(f +1)g−1 . Equation (29) shows that for

any element in �g−1, say λ
g−1
i ∈ �g−1, both solutions of

λ − f − f

λ−1 = λ
g−1
i are in �(2)

g . It is clear that λ − f

− f

λ−1 = λ
g−1
i is equivalent to

λ2 − (
λ

g−1
i + f + 1

)
λ + λ

g−1
i = 0, (32)

the two roots of which are denoted, respectively, by λ̃
g

i and
λ̃

g

i+(f +1)g−1 , since these notations give a natural increasing or-
der of the eigenvalues of Ug, as will be shown below.

Solving the quadratic equation provided by Eq. (32),
we obtain the two roots to be λ̃

g

i = r1(λg−1
i ) and λ̃

g

i+(f +1)g−1

= r2(λg−1
i ), where r1(λg−1

i ) and r2(λg−1
i ) are

r1(λg−1
i )= 1

2

(
λ

g−1
i +f +1 −

√
(λg−1

i + f + 1)
2 − 4λ

g−1
i

)
(33)

and

r2
(
λ

g−1
i

)= 1

2

(
λ

g−1
i +f +1+

√
(λg−1

i + f + 1)
2 − 4λ

g−1
i

)
,

(34)

respectively. Thus, in this way each eigenvalue λ
g−1
i in �g−1

gives rise to two new eigenvalues in �(2)
g . Inserting each

Laplacian eigenvalue of Ug − 1 into Eqs. (33) and (34) gen-
erates all the elements of �(2)

g . Considering the initial value
�0 = {0}, by recursively applying Eqs. (33) and (34), the
Laplacian eigenvalues of Ug can be fully determined.

It is easy to prove that the two roots, r1(λg−1
i )

and r2(λg−1
i ), of Eq. (32) monotonously increase with

λ
g−1
i and both lie in intervals [0, 1) and (1, +∞), re-

spectively. Thus, for any eigenvalue in λ
g−1
i ∈ �g−1,

r1(λg−1
i ) < 1 < r2(λg−1

i ) always holds. In addition, the
following conclusion can be reached based on simple ar-
gument. Assuming that Eg−1 = {λg−1

1 , λ
g−1
2 , . . . , λ

g−1
(f +1)g−1},

then �(2)
g can be generated via Eqs. (33) and (34), that

is, �(2)
g = {λ̃g

1, λ̃
g

2, . . . , λ̃
g

2(f +1)g } satisfying λ̃
g

1 ≤ λ
g

2 · · ·
≤ λ̃

g

(f +1)g−1 < 1 < λ̃
g

(f +1)g−1+1
≤ λ̃

g

(f +1)g−1+2
· · · ≤ λ̃

g

2(f +1)g−1 .

Recall that �(1)
g contains (f − 1)(f + 1)g − 1 elements 1, we

now have gotten the whole set of Laplacian eigenvalues for
Ug to be �g = �(1)

g ∪ �(2)
g .

In order to see the distribution of the Laplacian eigen-
values for Ug. We use Eqs. (33) and (34) to determine the
eigenvalues of a specific network corresponding to f = 4 and
g = 5. In addition, by diagonalizing the associated Lapla-
cian matrix, we also compute numerically the eigenvalues
and their multiplicities, which are in complete agreement
with those analytical results, confirming that the theoretic ap-
proach is valid. In Fig. 4(a), we display as a histogram, for the

FIG. 4. Number of distinct eigenvalues for a small-world polymer network
(a) and its corresponding Vicsek fractal (b), with f = 4 and g = 5 for both
networks.
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result of the network corresponding to f = 4 and g = 5, thus
having a size N5 = 3125. Furthermore, we also present in
Fig. 4(b) the histogram for the corresponding Vicsek fractals
with f = 4 and g = 5.

By comparing Figs. 4(a) and 4(b), we can see that num-
ber of distinct eigenvalues in the small-world network is much
less than its corresponding Vicsek fractal. Note that in Ug,
the distinct degree values for nodes are g + 1, while for
corresponding Vicsek fractals, the degree values are 3 (all
node have degree 1, 2, or f). The reasons for the interest-
ing phenomenon that Vicsek fractals display a larger het-
erogeneity in the Laplacian spectrum but a far smaller het-
erogeneity in the degree values deserve further study in the
future. In addition to the number of dissimilar eigenvalues,
the difference of eigenvalues is also obvious for these two
networks. For instance, the maximum eigenvalue, λ

g
max, of

the small-world polymer network is substantially higher than

that of the Viscek fractal. As we will show, these differ-
ences of Laplacian spectra between the two networks will lead
to different behaviors for various dynamics taking place on
them.

B. Eigenvectors

Analogous to the eigenvalues, the eigenvectors of Lg can
also be derived directly from those of Lg−1. Assume that λ

is an eigenvalue of Laplacian matrix for Ug, the correspond-
ing eigenvector of which is v ∈ R(f +1)g , where R(f +1)g is the
(f + 1)g-dimensional vector space. Then the eigenvector v

can be determined by solving equation (λ Ig − Lg)v = 0. We
distinguish two cases, λ ∈ �(1)

g and λ ∈ �(2)
g , which will be

separately treated as follows.
For the case of λ ∈ �(1)

g , in which all λ = 1, equation
(λ Ig − Lg)v = 0 becomes

⎛
⎜⎜⎜⎜⎜⎝

(1 − f )Ig−1 − Lg−1 Ig − 1 Ig − 1 · · · Ig − 1
Ig−1 0 0 · · · 0
Ig−1 0 0 · · · 0

...
...

...
. . .

...
Ig−1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

v1

v2

v3
...

vf +1

⎞
⎟⎟⎟⎟⎟⎠ = 0, (35)

where vector vi (1 ≤ i ≤ f + 1) are components of v. Equation (35) leads to the following equations:

v1 = 0, (36)

v2 + v3 + . . . + vf +1 = 0. (37)

In Eq. (36), v1 is a zero vector. Let vi = (vi,1, vi,2, . . . , vi,(f +1)g )�, then, Eq. (37) is equivalent to the following equations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v2,1 + v3,1 + . . . + vf +1,1 = 0
v2,2 + v3,2 + . . . + vf +1,2 = 0

...
...

...
...

...
...

v2,(f +1)g−1 + v3,(f +1)g−1 + . . . + vf +1,(f +1)g−1 = 0

.

The set of all solutions to any of the above equations consists of vectors of the following form:⎛
⎜⎜⎜⎜⎜⎝

v2,j

v3,j

v4,j

...
vf +1,j

⎞
⎟⎟⎟⎟⎟⎠ = k1,j

⎛
⎜⎜⎜⎜⎜⎝

−1
1
0
...
0

⎞
⎟⎟⎟⎟⎟⎠ + k2,j

⎛
⎜⎜⎜⎜⎜⎝

−1
0
1
...
0

⎞
⎟⎟⎟⎟⎟⎠ + . . . + km−1,j

⎛
⎜⎜⎜⎜⎜⎝

−1
0
0
...
1

⎞
⎟⎟⎟⎟⎟⎠ , (38)

where k1, j , k2, j , . . . , kf − 1, j are arbitrary real numbers. In Eq. (38), the solutions for all the vectors vi (2 ≤ i ≤ f + 1) can be
rewritten as ⎛

⎜⎜⎜⎜⎜⎜⎝

v�
2

v�
3

v�
4
...

v�
f +1

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 −1 · · · −1
1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

k1,1 k1,2 · · · k1,(f +1)g−1

k2,1 k2,2 · · · k2,(f +1)g−1

k3,1 k3,2 · · · k3,(f +1)g−1

...
...

...

kf −1,1 kf −1,2 · · · kf −1,(f +1)g−1

⎞
⎟⎟⎟⎟⎟⎟⎠ , (39)

where ki, j(1 ≤ i ≤ f − 1; 1 ≤ j ≤ (f + 1)g − 1) are arbitrary real numbers. Using Eq. (39), we can obtain the eigenvector v associ-
ated with the eigenvalue 1. Furthermore, we can easily check that the dimension of the eigenspace of matrix Lg corresponding
to eigenvalue 1 is (f − 1)(f + 1)g − 1.
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We proceed to address the case of λ ∈ �(2)
g . For this case, equation (λ Ig − Lg)v = 0 can be rewritten as⎛

⎜⎜⎜⎜⎜⎜⎜⎝

(λ − f )Ig−1 − Lg−1 Ig−1 Ig−1 · · · Ig−1

Ig−1 (λ − 1)Ig−1 0 · · · 0

Ig−1 0 (λ − 1)Ig−1 · · · 0

...
...

...
. . .

...

Ig−1 0 0 · · · (λ − 1)Ig−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v1

v2

v3

...

vf +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= 0, (40)

where vector vi (1 ≤ i ≤ f + 1) are components of v.
Equation (40) leads to the following equations:

[(λ − f )Ig−1 − Lg−1]v1 + v2 + . . . + vf +1 = 0, (41)

v1 + (λ − 1)vi = 0 (2 ≤ i ≤ f + 1). (42)

Resolving Eq. (42) yields

vi = − 1

λ − 1
v1 (2 ≤ i ≤ f + 1). (43)

Inserting Eq. (43) into Eq. (41) results in[(
λ − f − f

λ − 1

)
Ig−1 − Lg−1

]
v1 = 0, (44)

which indicates that v1 is the solution of Eq. (41), while vi

(2 ≤ i ≤ f + 1) are completely determined by v1 via
Eq. (43). As demonstrated in Eq. (29), if λ is an eigen-
value of Lg , then ϕ(λ) = λ − f − f

λ−1 is an eigenvalue of
Lg−1. Thus, Eqs. (29) and (44) imply that v1 is an eigen-
vector of Lg−1 corresponding to eigenvalue λ − f − f

λ−1 ,
while

v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1

v2

v3

...

vf +1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1

− 1
λ−1v1

− 1
λ−1v1

...

− 1
λ−1v1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(45)

is an eigenvector of Lg associated with eigenvalue λ.
Since for the initial graph U0, its Laplacian matrix L0 has

only one eigenvalue 0 with corresponding eigenvector (1)�;
by recursively applying the above process, we can obtain all
the eigenvectors corresponding to λ ∈ �(2)

g .
In this way, we have completely determined all eigenval-

ues and their corresponding eigenvectors of Ug. In the follow-
ing text, we will use these obtained results, especially those
for eigenvalues, to study some dynamical processes taking
places in Ug, including random walks with a trap, relaxation
dynamics in the GGS framework, and depolarization of fluo-
rescence by Föster quasiresonant energy transfer.

IV. TRAPPING PROCESS

In this section, we study trapping problem in the small-
world polymer networks. The trapping problem is a particular
kind of random walks with a trap fixed at a position, absorbing

all particles visiting it. In the process of random walks, at each
time step, the particle (walker), starting from its current loca-
tion, moves to any of its nearest neighbors with equal prob-
ability. One of the primary quantities related to the trapping
problem is trapping time (TT).24 The TT for a node is defined
as the mean first-passage time (MFPT) for a particle starting
from the node to the trap. Let Fi, j(g) denote the MFPT from
node i to node j. Below we will focus on two cases of trapping
problem. In the first case, the trap is fixed on the central node,
while in the other case, the trap is uniformly distributed over
the whole networks.

A. Trapping with a trap fixed on the central node

We first consider the case of trapping in Ug with the per-
fect trap being located at the central hub node hg. In this case,
the quantity we are concerned with is the average trapping
time (ATT), Fh(g), which is the average of Fi,hg

(g) over all
possible starting points in Ug. That is,

Fh(g) = 1

Ng

Ng∑
i=1

Fi,hg
(g). (46)

We next study analytically Fh(g) by using the second con-
struction method of the networks, showing how Fh(g) changes
with the network size Ng.

Let Fsum(g) denote the sum term on the rhs of Eq. (46),
i.e.,

Fsum(g) =
∑
i∈Ug

Fi,hg
(g). (47)

Then,

Fh(g) = Fsum(g)

Ng

. (48)

Thus, we reduce the problem of determining Fh(g) to eval-
uating Fsum(g). To find Fsum(g), we should determine some
intermediary quantities. First, for all g ≥ 0, Fhg,hg

(g) = 0. On
the other hand, according to the previous results obtained by
various techniques,25, 26 we have

F
h

(i)
g ,hg

(g) = F
h

(i)
g ,h

(0)
g

(g) = 2Ng−1 − 1 = 2(f + 1)g−1 − 1,

(49)
for all 1 ≤ i ≤ f. Then, from the second construction of the
networks, we obtain
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Fsum(g)

=
∑

i∈U
(0)
g−1

Fi,hg
(g) +

f∑
j=1

∑
i∈U

(j )
g−1

[
F

i,h
(j )
g

(g) + F
h

(i)
g ,h

(0)
g

(g)
]

= Fsum(g − 1) + f [Fsum(g − 1) + Ng−1(2Ng−1 − 1)]

= (f + 1)Fsum(g − 1) + f (f + 1)g−1[2(f + 1)g−1 − 1].

(50)

Considering Fsum(0) = 0, Eq. (50) is solved to yield

Fsum(g) = 2(f + 1)2g−1 − (f + 1)g−1(fg + 2). (51)

Substituting Eq. (51) into Eq. (48), we arrive at the
closed-form expression of Fh(g) as

Fh(g) = 2(f + 1)g−1 − fg + 2

f + 1
. (52)

We next show how to represent Fh(g) in terms of the network
size Ng, with a goal to obtain the relation between these two
quantities. Recalling Eq. (1), we have g = ln Ng/ln (f + 1),
which enables us to write Fh(g) in the following form:

Fh(g) = 2Ng

f + 1
− f ln Ng

(f + 1) ln(f + 1)
− 2

f + 1
. (53)

Equation (53) provides an explicit dependence relation of
Fh(g) on Ng and parameter f. For a sufficiently large system,
i.e., Ng → ∞, the dominating term of Fh(g) is

Fh(g) 	 2Ng

f + 1
, (54)

which increases linearly with the system size. This linear scal-
ing of ATT on the network size is in sharp contrast to the su-
perlinear scaling of ATT in Vicsek fractals with the central
node as the trap.27, 28

B. Trapping with the trap uniformly distributed

In Subsection IV A, we have discussed the trapping prob-
lem in Ug with an immobile trap positioned at the central
node. Here we study another case of trapping problem in Ug

with the trap uniformly distributed over the whole networks.
In this case, we are concerned with the quantity Fg defined as
the average of MFPT Fij(g) over all pairs of source point i and
target point j in the networks:

Fg = 1

(Ng)2

Ng∑
i=1

Ng∑
j=1

Fij (g). (55)

Let Ftot(g) denote the summation term on the rhs of Eq. (55):

Ftot(g) =
Ng∑
i=1

Ng∑
j=1

Fij (g). (56)

Then,

Fg = Ftot(g)

(Ng)2
, (57)

which is actually the ATT when the trap is uniformly dis-
tributed. Notice that the quantity Fg involves a double aver-

age: the first one is over all the source points to a given trap,
the second one is the average of the first one.

In order to compute Fg, we use the relation governing
resistance distance and MFPTs between two nodes in a con-
nected graph.29, 30 For this purpose, we look on Ug as an elec-
trical network31 by considering each edge in Ug to be a unit
resistor.32 Let Rij(g) be the effective resistance between two
nodes i and j in the electrical network corresponding to Ug.
Then, the following exact relation:

Fij (g) + Fji(g) = 2Eg Rij (g), (58)

holds,29, 30 and Eq. (56) can be recast as

Ftot(g) = Eg

Ng∑
i=1

Ng∑
j=1

Rij (g). (59)

Applying the previous results,33, 34 the sum term of effective
resistance between all pairs of nodes in Ug can be evaluated
as

Ng∑
i=1

Ng∑
j=1

Rij (g) = 2Ng

Ng∑
i=2

1

λ
g

i

. (60)

Then, Eq. (55) becomes

Fg = 2
Ng∑
i=2

1

λ
g

i

. (61)

Having expressing Fg in terms of the sum of the recipro-
cal of all nonzero Laplacian eigenvalues for Ug, the next step
is to find this sum, denoted by �g. By definition,

�g =
Ng∑
i=2

1

λ
g

i

=
∑

λ
g

i ∈�
(1)
g

1

λ
g

i

+
∑

λ̃
g

i ∈�
(2)
g

1

λ̃
g

i

. (62)

Let �(1)
g and �(2)

g denote separately the two sums on the rhs of
Eq. (62). Obviously,

�(1)
g = (f − 1)(f + 1)g−1. (63)

And �(2)
g can also be calculated as

�(2)
g =

2(f +1)g−1∑
i=2

1

λ̃
g

i

=
(f +1)g−1∑

i=2

(
1

λ̃
g

i

+ 1

λ̃
g

i+(f +1)g−1

)
+ 1

λ̃
g

1+(f +1)g−1

=
(f +1)g−1∑

i=2

λ̃
g

i + λ̃
g

i+(f +1)g−1

λ̃
g

i λ̃
g

i+(f +1)g−1

+ 1

λ̃
g

1+(f +1)g−1

. (64)

Because λ̃
g

i and λ̃
g

i+(f +1)g−1 are two roots of the
quadratic equation given by Eq. (32), using Vieta’s for-
mulas, we have λ̃

g

i + λ̃
g

i+(f +1)g−1 = λ
g−1
i + f + 1 and

λ̃
g

i × λ̃
g

i+(f +1)g−1 = λ
g−1
i . Furthermore, considering λ̃

g

1 = 0,
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so λ̃
g

1+(f +1)g−1 = m + 1. Then Eq. (64) is reduced to

�(2)
g =

(f +1)g−1∑
i=2

λ
g−1
i + f + 1

λ
g−1
i

+ 1

f + 1

= (f + 1)g−1 − 1 + (f + 1)
(f +1)g−1∑

i=2

1

λ
g−1
i

+ 1

f + 1

= (f + 1)g−1 − 1 + (f + 1)Tg−1 + 1

f + 1
. (65)

Note that �(2)
g = �g − �(1)

g = �g − (f − 1)(f + 1)g−1,
applying this result into Eq. (62), one can reach the follow-
ing recursive relation for �g:

�g = (f + 1)�g−1 + f (f + 1)g−1 − f

f + 1
. (66)

With the initial situation �0 = 0, Eq. (66) can be resolved to
yield an explicit formula for �g as

�g = (f + 1)g−1(fg − 1) + 1

f + 1
. (67)

Thus, the exact expression for Fg is

Fg = 2(f + 1)g−1(fg − 1) + 2

f + 1
, (68)

which can be further represented as a function of network size
Ng as

Fg = 2f

(f + 1) ln(f + 1)
Ng ln Ng − 2

f + 1
Ng + 2

f + 1
.

(69)

When the network size tends to infinity, i.e., g → ∞, Fg has
the following dominant form:

Fg ∼ 2f

(f + 1) ln(f + 1)
Ng ln Ng, (70)

a scaling also different from that previously found for Vic-
sek fractals,35 in which Fg increases as a superlinear function
of Ng.

C. Result comparison and analysis

From above-obtained results given by Eqs. (54) and (70),
it is easy to see that the dominating terms for Fhg

(g) and Fg

behave differently. The former obeys Fhg
(g) ∼ Ng , while the

latter follows Fg ∼ Ng ln Ng, greater than that of the former.
This disparity indicates that in the family of treelike small-
world polymer networks, the location of the trap has a strong
influence on the trapping efficiency measured by ATT, which
is in comparison with that for Vicsek fractals, where the effect
of trap’s location is negligible.27, 28, 35 In addition, the distinc-
tion between Fhg

(g) and Fg also shows that the leading scaling
of ATT to a given node in Ug, e.g., the central node, might be
not representative of the networks.

The dissimilar dominating scalings for Fhg
(g) and Fg in

Ug lie in the network structure and can be heuristically ac-
counted for as follows. As shown in Fig. 2, Ug consists of

f + 1 copies of Ug−1: one central replica, and f peripheral du-
plicates. When the trap is positioned at the central hub node,
the particle will visit at most one copy of Ug − 1, i.e., a faction
of 1/(f + 1) among all nodes in Ug. Thus, the ATT Fhg

(g)
is small and grows linearly with network size, revealing a
high trapping efficiency. In contrast, when the trap is located
at another node, the particle should first visit the hub node,
from which it continues to jump until being absorbed by the
trap. So, the percentage of visited nodes is larger than that of
the case when the trap is fixed at the hub. In particular, for the
case that the trap is placed at a node farthest from the hub, the
particle must visit all nodes of the networks before reaching
the target. That is why the trapping process is less efficient
when the trap is uniformly distributed.

The differences of behaviors of random walks in the
small-world treelike polymer networks and Vicsek fractals are
rooted in their underlying structures. For example, for trap-
ping with a trap at the central node, the fact that the trapping
efficiency of the former is higher than the latter can be un-
derstood as follows. For a walker in the small-world trees, as
shown above, it will visit at most a fraction of 1

f +1 nodes be-
fore being trapped; while for trapping in Vicsek fractals, the
walker may visit a larger fraction (greater than 1

f +1 ) of nodes
prior to being absorbed by the central trap node.

V. GENERALIZED GAUSSIAN STRUCTURES
AND RELAXATION PATTERNS

In this section, we consider the relaxation dynamics of
the treelike polymer networks in the framework of GGS,36–39

which is an extension of the classic Rouse model,40 devel-
oped for linear polymer chains and extended to more complex
geometries.

A. Brief introduction to GGS

The theory of GGS was accounted for in detail in previ-
ous works,36–38 thus we give here only a brief introduction of
the basic equation and main results related to the relaxation
dynamics patterns.

A GGS consists of N beads subject to the friction with
friction constant ζ , which are connected to each other by elas-
tic springs with elasticity constant K. In the Langevin formal-
ism, the dynamics of bead m obey the following equation:

ζ
dRm(t)

dt
+ K

N∑
i=1

LmiRm(t) = fm(t) + Fm(t). (71)

In Eq. (71), Rm(t) = (Xm(t), Ym(t), Zm(t)) is the position
vector of the mth bead at time t; Lmi is the mith entry of
the Laplacian matrix L describing the topology of the GGS;
fm(t) is the thermal noise that is assumed to be Gaussian with
zero mean value 〈fm(t)〉 and 〈fmα(t)fmβ(t′)〉 = 2kBTδαβδ(t − t′),
where kB is the Boltzmann constant, T is the temperature, α

and β represent the x, y, and z directions; Fm(t) is the external
force acting on bead m.

We focus on the motion (drift and stretching) of the GGS
under a constant external force F = F � (t)ey (here �(t) is
the Heaviside step function), switched on at t = 0 and acting
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on a single bead in the y direction. The displacement along
the y direction, Y(t), after averaging both over the fluctuating
forces fm(t) and over all the beads in the GGS, reads37–39

〈Y (t)〉 = F t

Nζ
+ F

σNζ

N∑
i=2

1 − exp(−σλit)

λi

, (72)

where σ = K/ζ is the bond rate constant, and λi is the
eigenvalues of matrix L with λ1 being the unique least eigen-
value 0.

Equation (72) shows that in the Rouse model the aver-
age displacement depends only on the eigenvalues but not on
the eigenvectors of matrix L. Notice that, in Eq. (72), due to
λ1 = 0, the motion of the center of mass has separated auto-
matically from the rest. Moreover, from Eq. (72), the behav-
ior of the averaged displacement for extremely short times
and for very long times is obvious. In the limit of very short
times and sufficiently large N, 〈Y(t)〉 ∼ Ft/ζ , while for very
long times, we have 〈Y(t)〉 ∼ Ft/(Nζ ). The physical explana-
tion is as follows: for very short times only one bead is mov-
ing, whereas for very long times the whole GGS diffuses. The
above two behaviors are general features for all systems, for
a given GGS, its particular topology comes into play only in
the intermediate time domain.

In addition to 〈Y(t)〉, another interesting quantity is the
mechanical relaxation form, namely, the complex dynamic
modulus G*(ω), or equivalently, its real G′(ω) and imagi-
nary G′′(ω) components, which are known as the storage and
the loss moduli.41, 42 For very dilute solutions and for ω > 0,
G′(ω) and G′′(ω) for the Rouse model are given by

G′(ω) = νkBT

N

N∑
i=2

(ω/2σλi)2

1 + (ω/2σλi)2 (73)

and

G′′(ω) = νkBT

N

N∑
i=2

ω/2σλi

1 + (ω/2σλi)2 , (74)

where ν denotes the number of polymer segments (beads) per
unit volume.

The relaxation patterns of various polymer systems have
been studied in previous works,1 including star polymers,38, 39

dendrimers,14, 43–46 hyperbranched polymers,47–50 dual Sier-
pinski fractals,51–53 small-world networks,54, 55 and scale-free
networks.56 Below we will compute related relaxation quanti-
ties for the treelike small-world polymer networks under con-
sideration.

B. Relaxation patterns

By substituting the full eigenvalues obtained in
Sec. III A into Eqs. (72)–(74), we can compute, respectively,
the averaged displacement 〈Y(t)〉, the storage modulus G′(ω),
and the loss modulus G′′(ω) for the relaxation dynamics of
the small-world polymer networks Ug.

We begin by focusing on the averaged monomer dis-
placement, 〈Y(t)〉, given by Eq. (72) in which we set σ = 1
and F/ζ = 1. In Fig. 5, we present in a double logarithmical
scale the results of 〈Y(t)〉 for networks U6 with f ranging from

FIG. 5. Averaged monomer displacement 〈Y(t)〉 for U6 with f = 2, 3, 4, 6.

2 to 6. As mentioned above, from Fig. 5, the behaviors of
〈Y(t)〉 for very short and long times are clearly evident, obey-
ing 〈Y(t)〉 ∼ Ft/ζ and 〈Y(t)〉 ∼ Ft/(Nζ ), respectively. In the
region of very short times, only one monomer moves, hence
the curves are not dependent on N. In contrast, in the domain
of very large times, the whole structure drifts, thus the curves
depend on N: the higher the value of N, the slower the limit-
ing long time behavior will be. Typical for the small-world
treelike structure is intermediate time regime, where 〈Y(t)〉
scales as a power-law behavior with the exponent α = 0.2
for all f, a phenomenon different from that of Vicsek fractals,
the exponent of which is related to their spectral dimensions
d̃ = 2 ln(f + 1)/ ln(3f + 3).

For the storage modulus G′(ω), we report the results in
Fig. 6, which is plotted in dimensionless units by setting
σ = 1 and νkBT

N
= 1. Figure 6 indicates that in the very low

and high frequency limit the storage modulus G′(ω) exhibits
a power-law ω2 and a plateau, respectively. Both phenomena
are the same as those of many different systems. In the inter-
mediate regime the structure being studied plays an important
role. For the four cases of f = 2, 3, 4, 6, we can observe an
obvious power-law behavior with an exponent α′ = 1 for all
f, but the behavior becomes more prominent with f increasing

FIG. 6. Storage modulus G′(ω) for U6 with various f.
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FIG. 7. Loss modulus G′ ′(ω) for U6 with f = 2, 3, 4, 6.

from 2 to 6. It is worth stressing that this result is also different
from that for Vicsek fractals.47–50

For the loss modulus G′′(ω), we plot in a double scale the
results in Fig. 7. As in the case of G′(ω), we consider σ = 1
and νkBT

N
= 1. From Fig. 7, it is easy to notice that for very

low frequencies ω, G′′(ω) ∼ ω1; and that for very high fre-
quencies ω, G′′(ω) behaves as G′′(ω) ∼ ω−1. In the interme-
diate region, no power-law behavior is observed, which is in
marked contrast to that corresponding to Vicsek fractals.48–50

It is also important to notice that in the intermediate region,
G′(ω) and G′′(ω) display different behaviors for the small-
world structure.

The distinct behaviors for the three quaternities related
to relaxation patterns in Viscek fractals and the small-world
treelike polymer networks lie in the differences between the
two structures. As the name suggests, Viscek fractals are frac-
tals, their relaxation patterns are determined by the fractal
dimension and spectral dimension.47–50 For the small-world
treelike polymer networks, they are non-fractal, and thus ex-
hibit different relaxation patterns.

VI. FLUORESCENCE DEPOLARIZATION

We are now in position to study the dynamics of Förster
energy transfer over a system of chromophores2, 3, 15 posi-
tioned at nodes (beads) of the small-world polymer networks.
We suppose that the energy can be exchanged only between
the nearest neighbors. Then, the energy transfer among chro-
mophores located at the nodes of Ug can be described by the
following equation:

dPi(t)

dt
=

Ng∑
j=1
j �=i

TijPj (t) −

⎛
⎜⎜⎜⎝

Ng∑
j=1
j �=i

Tij

⎞
⎟⎟⎟⎠ Pi(t), (75)

where Pi(t) denotes the probability that node i is excited at
time t, and Tij represents the transfer rate from node j to
node i.

As usual, we here separate the radiative delay (equal for
all chromophores) from the transfer problem. In fact, the ra-

FIG. 8. The average probability 〈P(t)〉 for f = 3 and g = 4, 5, 6, and 7 from
above, shown in a log-log scale.

diative delay only leads to the multiplication of all the Pi(t)
by exp (− g/τR), where 1/τR is the radiative decay rate. We
presume that all microscopic rates are equal to each other, say
k̃, then Eq. (75) becomes

dPi(t)

dt
= −k̃

Ng∑
j=1
j �=i

LijPj (t) − (k̃Lii)Pi(t), (76)

where Lij is the ijth entry of Laplacian matrix Lg .
As shown before,2, 3, 15 the probability of finding the ex-

citation at time t on the originally excited chromophore, aver-
aged over all possible starting points on Ug, is given by

〈P (t)〉 = 1

Ng

Ng∑
i=1

Pi(t) = 1

Ng

Ng∑
i=1

exp(−k̃ λ
g

j t), (77)

which is dependent on all eigenvalues of the Laplacian matrix
for Ug.

Making use of the eigenvalues obtained in Sec. III A, we
can evaluate 〈P(t)〉 for very large networks, without diago-
nalizing the Laplacian matrix. By setting k̃ = 1, i.e., by mea-
suring the time in units of 1/k̃, we can compute the average
probability 〈P(t)〉 that an initially excited chromophore is ex-
cited at time t. In Fig. 8, we present the results for the case
f = 3, with g varying from g = 4 to g = 7.

From Fig. 8, we can see that at very short and very long
times, the overall behavior for different g is similar. For ex-
ample, at long times (depending on the network size), each
curve becomes flat, which (in the absence of any radiative
decay) is due to the equal distribution of the energy over all
nodes in the networks, with each node having a probability
of 1/Ng of being excited. We note that similar phenomenon is
also observed for Vicsek fractals.2, 3 However, at intermediate
times, the curves for different g behave quite different, but no
scaling is observed, meaning that no curves follow a linear
behavior. This phenomenon is as opposed to that for Vicsek
fratals, the corresponding curves of which show an obvious
algebraic behavior.2, 3 The disparity in 〈P(t)〉 makes it easy to
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differentiate between Vicsek fractals and the polymer net-
works studied here.

VII. CONCLUSIONS

In this paper, we have introduced a class of deterministi-
cally growing treelike polymer networks, and shown that they
have an exponential-form degree distribution and the small-
world characteristic at the same time. We have fully char-
acterized the Laplacian eigenvalues and their corresponding
eigenvectors of the networks, which are determined through
recursive relations derived from the specific network con-
struction. Using the eigenvalues, we have further studied three
representative dynamics for the polymer networks, such as
trapping problem, relaxation dynamics in the framework of
the GSS, and energy transfer through fluorescence depolar-
ization. Moreover, we have compared the dynamical behav-
iors with those for Vicsek fractals, which are fundamentally
different from each other. Finally, in addition to the aforemen-
tioned dynamics, we expect that the obtained eigenvalues and
eigenvectors can be adaptable to other dynamics in the small-
world networks, e.g., quantum walks.57–61
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