gaojie100001的个人博客分享 http://blog.sciencenet.cn/u/gaojie100001

博文

华中师范大学2009年数学分析试题解答

已有 3047 次阅读 2014-9-4 12:05 |系统分类:生活其它

华中师范大学2009年数学分析试题解答

一、    计算题

1:解:由于

$underset{xto {{0}^{+}}}{mathop{lim }},frac{sin ({{x}^{alpha }})}{{{x}^{alpha }}}=1,underset{xto {{0}^{+}}}{mathop{lim }},frac{{{(1+x)}^{beta }}-1}{beta x}=underset{xto {{0}^{+}}}{mathop{lim }},frac{beta {{(1+x)}^{beta -1}}}{beta }=1$

而$underset{xto {{0}^{+}}}{mathop{lim }},cos [sin (frac{1}{ln x})]=1$

于是

$underset{xto {{0}^{+}}}{mathop{lim }},frac{sin ({{x}^{alpha }})cos [sin (frac{1}{ln x})]}{{{(1+x)}^{beta }}-1}=underset{xto {{0}^{+}}}{mathop{lim }},frac{{{x}^{alpha }}}{beta x}=frac{1}{beta }underset{xto {{0}^{+}}}{mathop{lim }},{{x}^{alpha -1}}$$=left{begin{array}{ll}
+infty, & hbox{$alpha<1$;} \
frac{1}{beta }, & hbox{$alpha=1$;} \
0, & hbox{$alpha>1$.}
end{array}
right.$

2:解:

$iint_{D}{frac{sin y}{y}}dxdy=int_{0}^{1}{dyint_{0}^{y}{frac{sin y}{y}dx=int_{0}^{1}{sin ydy=-cos y|_{0}^{1}}=1-cos 1}}$

3:不妨设

$P(x,y)=-frac{y-2}{4{{(x-1)}^{2}}+{{(y-2)}^{2}}},Q(x,y)=frac{x-1}{4{{(x-1)}^{2}}+{{(y-2)}^{2}}}$

于是

${{P}_{y}}=frac{-4{{(x-1)}^{2}}+{{(y-2)}^{2}}}{4{{(x-1)}^{2}}+{{(y-2)}^{2}}}={{Q}_{x}}$

记$D$表示$C$所包围的图形

由格林公式可知:

$oint_{C}{frac{(x-1)dy-(y-2)dx}{4{{(x-1)}^{2}}+{{(y-2)}^{2}}}}=oint_{C}{Pdx+Qdy=iint_{D}{({{Q}_{x}}}}-{{P}_{y}})dxdy=0$

二、

法一:证明:任取${{x}_{0}}in (a,b)$,令$underset{xto {{x}_{0}}}{mathop{lim }},f(x)=A$

若$f({{x}_{0}})>A$,则存在$B:f({{x}_{0}})>B>A$

而对$varepsilon =B-A$,存在$delta >0$,当$0<left| x-{{x}_{0}} right|<delta $时,有

$A-varepsilon <f(x)<A+varepsilon =B$

${{x}_{1}}:0<left| {{x}_{1}}-{{x}_{0}} right|<delta ,f({{x}_{1}})<B<f({{x}_{0}})$

则在${{x}_{1}}$与${{x}_{0}}$之间$f(x)$的取值违反介值性,因此$f({{x}_{0}})le A$

类似可证$f({{x}_{0}})<A$也不行

于是$f({{x}_{0}})=underset{xto {{x}_{0}}}{mathop{lim }},f(x)=A$

即$f(x)$在$x={{x}_{0}}$处连续,由${{x}_{0}}$的任意性知,$f(x)$在$(a,b)$上连续

于是$f(x)$在$(a,b)$上有界

法二:

证明:反证法,不妨设$f(x)$在开区间$(a,b)$上无界

则对任意的$nin {{N}^{*}}$,存在数列${{{x}_{n}}}subset (a,b)$,使得$f({{x}_{n}})ge n$

而${{{x}_{n}}}subset (a,b)$为有界数列,由聚点定理可知

存在子列${{{x}_{{{n}_{k}}}}}$,使得$underset{kto +infty }{mathop{lim }},{{x}_{{{n}_{k}}}}={{x}_{0}}$,且$f({{x}_{{{n}_{k}}}})ge {{n}_{k}}$

这导致$underset{xto {{x}_{0}}}{mathop{lim }},f(x)$不存在,矛盾

于是$f(x)$在开区间$(a,b)$上有界

三、

(1)证明:由于对任意的$A>0$,有

$int_{A}^{+infty }{x{{e}^{-xy}}}dy=-{{e}^{-xy}}|_{A}^{+infty }={{e}^{-Ax}}$

于是当$xin [delta ,+infty )$时,${{e}^{-Ax}}le {{e}^{-Adelta }}$

而$underset{Ato +infty }{mathop{lim }},{{e}^{-Adelta }}=0$

于是对任意的$varepsilon >0$,存在${{A}_{1}}>0$,当$A>{{A}_{1}}$时,$left| {{e}^{-Adelta }} right|<varepsilon $

于是对任意的$varepsilon >0$,存在${{A}_{1}}>0$,当$A>{{A}_{1}}$时,$left| int_{A}^{+infty }{x{{e}^{-xy}}dy} right|<varepsilon $

于是$int_{0}^{+infty }{x{{e}^{-xy}}}dy$在$[delta ,+infty )$上一致收敛

(2)证明:存在${{varepsilon }_{0}}=frac{1}{2}$,对任意的$N>0$,存在$A=2N>N,{{x}_{0}}=frac{1}{2N}in (0,+infty )$,使得$left| int_{A}^{+infty }{{{x}_{0}}{{e}^{-{{x}_{0}}y}}dy} right|=left| -{{e}^{-{{x}_{0}}y}}|_{A}^{+infty } right|=frac{1}{e}>{{varepsilon }_{0}}$

于是$int_{0}^{+infty }{x{{e}^{-xy}}}dy$在$(0,+infty )$上不一致收敛

四、

(1)证明:不妨设$F(x)=frac{f(x)}{x},xin (0,1]$

由于$f(x)$在$(0,1)$上连续,在$(0,1]$上可微

于是$F(x)$在$(0,1)$上连续,在$(0,1)$上可微,且

于是对任意的$varepsilon >0$,对任意的${{x}_{1}},{{x}_{2}}in (0,1]$,由微分中值定理可知:

存在$xi in ({{x}_{1}},{{x}_{2}})$,使得

$left| f({{x}_{1}})-f({{x}_{2}}) right|=left| f'(xi ) right|left| {{x}_{1}}-{{x}_{2}} right|=left| frac{xi f'(xi )-f(xi )}{{{xi }^{2}}} right|left| {{x}_{1}}-{{x}_{2}} right|<Mleft| {{x}_{1}}-{{x}_{2}} right|$

于是令$delta =frac{varepsilon }{M}$,当$left| {{x}_{1}}-{{x}_{2}} right|<delta $时,有$left| f({{x}_{1}})-f({{x}_{2}}) right|<varepsilon $

于是$f(x)$在$(0,1]$内一致连续

(2)证明:由(1)可知:令$xto {{0}^{+}}$,当$0<x<delta $时,有$left| F(x)-f({{0}^{+}}) right|<varepsilon $

由极限定义可知:$underset{xto {{0}^{+}}}{mathop{lim }},F(x)=F({{0}^{+}})$存在

由$left| xf'(x)-f(x) right|<{{x}^{2}}M,xin (0,1)$,令$xto 0$得:$f(0)=underset{xto {{0}^{+}}}{mathop{lim }},f(x)=0$

于是$underset{xto {{0}^{+}}}{mathop{lim }},F(x)=underset{xto {{0}^{+}}}{mathop{lim }},frac{f(x)}{x}=underset{xto {{0}^{+}}}{mathop{lim }},frac{f(x)-f(0)}{x-0}=underset{xto {{0}^{+}}}{mathop{lim }},f'(x)$存在

五、

(1)

法一:

证明:由于$f(x)$在$[0,1]$上连续,则$left| f(x) right|$在$[0,1]$上连续

于是存在$M>0$,对一切$xin [0,1]$,有$left| f(x) right|le M$

于是对任意的$varepsilon >0$,有

$left| int_{0}^{1}{{{x}^{n}}f(x)dx} right|=left| int_{0}^{1-frac{varepsilon }{2M}}{{{x}^{n}}f(x)dx+int_{1-frac{varepsilon }{2M}}^{1}{{{x}^{n}}f(x)dx}} right|$

$le left| int_{0}^{1-frac{varepsilon }{2M}}{{{x}^{n}}f(x)dx} right|+left| int_{1-frac{varepsilon }{2M}}^{1}{{{x}^{n}}f(x)dx} right|le int_{0}^{1-frac{varepsilon }{2M}}{left| {{x}^{n}}f(x) right|dx+int_{1-frac{varepsilon }{2M}}^{1}{left| {{x}^{n}}f(x) right|dx}}$

当$xin [0,1-frac{varepsilon }{2M}]$时,由于$underset{nto +infty }{mathop{lim }},{{x}^{n}}f(x)=0$

则对上述$varepsilon >0$,存在$N>0$,当$n>N$时,有$left| {{x}^{n}}f(x) right|<frac{varepsilon }{2}$

当$xin [1-frac{varepsilon }{2M}]$时,$left| {{x}^{n}}f(x) right|le M$

于是对任意的$varepsilon >0$,存在$N>0$,当$n>N$时,有

$left| int_{0}^{1}{{{x}^{n}}f(x)dx} right|<(1-frac{varepsilon }{2M})cdot frac{varepsilon }{2}+Mcdot frac{varepsilon }{2M}<varepsilon$

于是

$underset{nto +infty }{mathop{lim }},int_{0}^{1}{{{x}^{n}}f(x)dx}=0$

法二:(稍微简单点)

证明:由于$f(x)$在$[0,1]$上连续,则$left| f(x) right|$在$[0,1]$上连续

于是存在$M>0$,对一切$xin [0,1]$,有$left| f(x) right|le M$

于是$left| int_{0}^{1}{{{x}^{n}}}f(x)dx right|le int_{0}^{1}{left| {{x}^{n}}f(x) right|}dxle Mint_{0}^{1}{{{x}^{n}}dx=frac{M}{n+1}}$

而$underset{nto +infty }{mathop{lim }},frac{M}{n+1}=0$,于是 $underset{nto +infty }{mathop{lim }},int_{0}^{1}{{{x}^{n}}f(x)dx}=0$

(2)证明:由于$f(x)$在$x=1$处连续

于是对任意的$varepsilon >0$,存在$delta >0$,当$1-delta <x<1$时,由$left| f(x)-f(1) right|<frac{varepsilon }{2}$

注意到$nint_{0}^{1}{{{x}^{n-1}}}f(1)dx=f(1)$,于是

$left| nint_{0}^{1}{{{x}^{n-1}}f(x)dx-f(1)} right|=nleft| int_{0}^{1}{{{x}^{n-1}}f(x)dx-int_{0}^{1}{{{x}^{n-1}}f(1)dx}} right|$

$le nint_{0}^{1}{{{x}^{n-1}}}left| f(x)-f(1) right|dx=n[int_{0}^{1-delta }{{{x}^{n-1}}left| f(x)-f(1) right|dx+int_{1-delta }^{1}{{{x}^{n-1}}left| f(x)-f(1) right|dx}}]$

$le 2Mcdot nint_{0}^{1-delta }{{{x}^{n-1}}dx+frac{varepsilon }{2}}cdot nint_{1-delta }^{1}{{{x}^{n-1}}}dx=2Mcdot {{(1-delta )}^{n}}+frac{varepsilon }{2}$

而$underset{nto +infty }{mathop{lim }},{{(1-delta )}^{n}}=0$

于是对上述$varepsilon >0$,存在$N>0$,当$n>N$时,有${{(1-delta )}^{n}}<frac{varepsilon }{2M}$

于是对任意$varepsilon >0$,存在$N>0$,当$n>N$时,有$left| nint_{0}^{1}{{{x}^{n-1}}f(x)dx-f(1)} right|<varepsilon $

$underset{nto +infty }{mathop{lim }},nint_{0}^{1}{{{x}^{n-1}}f(x)dx=f(1)}$

六、

(1)解:由于

而$underset{(x,y)to (0,0)}{mathop{lim }},left| frac{x}{2} right|=0$,于是

$underset{(x,y)to (0,0)}{mathop{lim }},f(x,y)=underset{(x,y)to (0,0)}{mathop{lim }},frac{{{x}^{2}}y}{{{x}^{2}}+{{y}^{2}}}sin sqrt{{{x}^{2}}+{{y}^{2}}}=0=f(0,0)$

即$f(x,y)$在$(0,0)$连续

(2)解:由于

${{f}_{x}}(0,0)=underset{Delta xto 0}{mathop{lim }},frac{f(Delta x,0)-f(0,0)}{Delta x}=0,{{f}_{y}}(0,0)=underset{Delta yto 0}{mathop{lim }},frac{f(0,Delta y)-f(0,0)}{Delta y}=0$

于是${{f}_{x}}(0,0),{{f}_{y}}(0,0)$都存在

(3)解:由于

$underset{rho to 0}{mathop{lim }},frac{f(Delta x,Delta y)-f(0,0)-{{f}_{x}}(0,0)Delta x-{{f}_{y}}(0,0)Delta y}{rho }=underset{rho to 0}{mathop{lim }},frac{{{(Delta x)}^{2}}Delta y}{{{(Delta x)}^{2}}+{{(Delta y)}^{2}}}cdot frac{sin sqrt{{{(Delta x)}^{2}}+{{(Delta y)}^{2}}}}{sqrt{{{(Delta x)}^{2}}+{{(Delta y)}^{2}}}}$

$underset{rho to 0}{mathop{lim }},frac{{{(Delta x)}^{2}}Delta y}{{{(Delta x)}^{2}}+{{(Delta y)}^{2}}}=0,underset{rho to 0}{mathop{lim }},frac{sin sqrt{{{(Delta x)}^{2}}+{{(Delta y)}^{2}}}}{sqrt{{{(Delta x)}^{2}}+{{(Delta y)}^{2}}}}=1$

于是

$underset{rho to 0}{mathop{lim }},frac{f(Delta x,Delta y)-f(0,0)-{{f}_{x}}(0,0)Delta x-{{f}_{y}}(0,0)Delta y}{rho }=0$

即$f(x,y)$在$(0,0)$可微

七、证明:

(1)不妨设${{f}_{n}}(x)$单调增加,则${{f}_{n}}(a)le {{f}_{n}}(x)le {{f}_{n}}(b)$

于是

$left| {{f}_{n}}(x) right|le max {left| {{f}_{n}}(a) right|,left| {{f}_{n}}(b) right|}le left| {{f}_{n}}(a) right|+left| {{f}_{n}}(b) right|$

而$sumlimits_{n=1}^{+infty }{left| {{f}_{n}}(a) right|,sumlimits_{n=1}^{+infty }{left| {{f}_{n}}(b) right|}}$都收敛

于是$sumlimits_{n=1}^{+infty }{(left| {{f}_{n}}(a) right|+left| {{f}_{n}}(b) right|})$也收敛

由判别法知,$sumlimits_{n=1}^{+infty }{{{f}_{n}}(x)}$在$[a,b]$上一致收敛

(2)不妨设${{f}_{n}}(x)$单调增加,则${{f}_{n}}(a)le {{f}_{n}}(x)le {{f}_{n}}(b)$

于是$0le {{f}_{n}}(x)-{{f}_{n}}(a)le {{f}_{n}}(b)-{{f}_{n}}(a)$

$left| {{f}_{n}}(x) right|-left| {{f}_{n}}(a) right|le left| {{f}_{n}}(x)-{{f}_{n}}(a) right|le left| {{f}_{n}}(b)-{{f}_{n}}(a) right|le left| {{f}_{n}}(b) right|+left| {{f}_{n}}(a) right|$

于是$left| {{f}_{n}}(x) right|le 2left| {{f}_{n}}(a) right|+left| {{f}_{n}}(b) right|$

而$sumlimits_{n=1}^{+infty }{left| {{f}_{n}}(a) right|,sumlimits_{n=1}^{+infty }{left| {{f}_{n}}(b) right|}}$都收敛

于是$sumlimits_{n=1}^{+infty }{(2left| {{f}_{n}}(a) right|+left| {{f}_{n}}(b) right|})$也收敛

由$M$判别法知,$sumlimits_{n=1}^{+infty }{{{f}_{n}}(x)}$在$[a,b]$上一致收敛

八、

(1)证明:先证明以下结论

若$f(x,y,z)$为连续函数,$V:{{x}^{2}}+{{y}^{2}}+{{z}^{2}}le 1$,求证:

$iiint_{V}{f(ax+by+cz)dxdydz=pi int_{-1}^{1}{(1-{{u}^{2}})f(sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}u)du}}$

证明:设$(a,b,c)$为三维空间的一个向量,单位向量化得

$(frac{a}{sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}},frac{b}{sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}},frac{c}{sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}})$

再将其扩充为三维空间的一个标准正交基,设为$({{a}_{1}},{{b}_{1}},{{c}_{1}}),({{a}_{2}},{{b}_{2}},{{c}_{2}})$

令$
A=left[begin{array}{cccc}
{frac{a}{{sqrt {{a^2} + {b^2} + {c^2}} }}} & {frac{b}{{sqrt {{a^2} + {b^2} + {c^2}} }}} & {frac{c}{{sqrt {{a^2} + {b^2} + {c^2}} }}} \
{{a_1}} & {{b_1}} & {{c_1}}\
{{a_2}} & {{b_2}} & {{c_2}}
end{array}right]
$

为正交矩阵

作正交变换$
left(begin{array}{cccc}
u \
v \
w
end{array}right)
$$
=Aleft(begin{array}{cccc}
x \
y \
z
end{array}right)
$

由于$A{{A}^{T}}=E$,则

$
left(begin{array}{cccc}
x \
y \
z
end{array}right)
$$
={A^{ - 1}}left(begin{array}{cccc}
u \
v \
w
end{array}right)
$$
={A^T}left(begin{array}{cccc}
u \
v \
w
end{array}right)
$

两边转置既得:$(x,y,z)=(u,v,w)A$,于是

${x^2} + {y^2} + {z^2}$$
=left(begin{array}{cccc}
x & y & z
end{array}right)
$$
left(begin{array}{cccc}
x \
y \
z
end{array}right)
$$
=left(begin{array}{cccc}
u & v & w
end{array}right)A
$$
{A^T}left(begin{array}{cccc}
u \
v \
w
end{array}right)
$$={u^2} + {v^2} + {w^2} le 1$

$left| frac{partial (x,y,z)}{partial (u,v,w)} right|=left| left| A right| right|=1$,$ax+by+cz=sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}u$

于是

$iiint_{V}{f(ax+by+cz)dxdydz=int_{-1}^{1}{f(sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}u)duiint_{{{v}^{2}}+{{w}^{2}}le 1-{{u}^{2}}}{dvdw}}}$

$=pi int_{-1}^{1}{(1-{{u}^{2}})f(sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}u)du}$

令$a=b=0,c=1$,即

$iiint_{V}{f(z)dxdydz=pi int_{-1}^{1}{(1-{{x}^{2}})f(x)dx}}$

(2)由(1)知:

$iiint_{V}{f(ax+by+cz)dxdydz=pi int_{-1}^{1}{(1-{{u}^{2}})f(sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}u)du}}=pi int_{-1}^{1}{(1-{{u}^{2}})f(u)du}$

即$F(a,b,c)=pi int_{-1}^{1}{(1-{{u}^{2}})f(u)du}$(常数)

 

 




https://wap.sciencenet.cn/blog-866753-824911.html

上一篇:华中师范大学2010年数学分析试题解答
下一篇:华中师范大学2013年数学分析试题解答
收藏 IP: 183.95.132.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-30 02:59

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部