崔蕴博
[转载]脂质修饰的重要性:蛋白质棕榈酰化在细胞信号调控中的作用
2023-6-28 09:59
阅读:854

《蛋白质棕榈酰化的信号功能》是由Dunphy和Linder于1998年发表在《生物物理学和生物化学》(Biochimica et Biophysica Acta,简称BBA)-脂质的分子与细胞生物学期刊上的一篇论文[1][1]。该论文讨论了蛋白质棕榈酰化的功能和机制,这是一种可逆的脂质修饰,将许多信号蛋白锚定到质膜的胞质侧[1][1]。论文回顾了近期对信号蛋白生物化学和细胞生物学的研究进展,特别强调了在激活和去激活循环过程中,棕榈酰化如何影响蛋白质功能[1]。

 

论文首先讨论了蛋白质棕榈酰化在调节蛋白质活性中的重要性。棕榈酰化的可逆性使其成为调节蛋白质活性的一个有吸引力的机制,这个特性引发了对负责棕榈酰化和去棕榈酰化的酶的密集研究[2]。然后,论文描述了蛋白质棕榈酰化的机制,包括负责添加和去除棕榈酸酯的酶,以及棕榈酰化在蛋白质-膜和蛋白质-蛋白质相互作用中的作用[1]。

 

作者还讨论了蛋白质棕榈酰化对理解细胞信号传导和疾病的意义。他们指出,棕榈酰化可以影响蛋白质与膜的亲和性、亚细胞定位以及与其他蛋白质的相互作用,而这些影响对细胞信号传导具有重要的后果[1]。论文还讨论了棕榈酰化在调节特定信号蛋白活性中的作用,包括G蛋白、蛋白激酶和Ras蛋白[1]。

 

总体而言,该论文全面回顾了蛋白质棕榈酰化的功能和机制,并强调了这种脂质修饰在调节蛋白质活性和细胞信号传导中的重要性。论文的研究结果对于理解蛋白质棕榈酰化在疾病中的作用以及开发针对这种脂质修饰的新疗法具有重要意义[3]。

 

这篇论文的研究结果对于理解细胞信号传导和疾病具有重要意义。棕榈酰化是一种可逆的脂质修饰,调节膜结合、亚细胞定位和蛋白质-蛋白质相互作用,并常常对蛋白质功能至关重要[1][1]。棕榈酰化的失调与多种疾病相关,包括癌症、神经系统疾病和传染病[3]。

 

论文研究结果之一的重要含义是,棕榈酰化在调节特定信号蛋白的活性中发挥重要作用,包括G蛋白、蛋白激酶和Ras蛋白[1]。这些蛋白质的失调与多种疾病相关,包括癌症和神经系统疾病[3]。例如,论文指出,Ras蛋白的棕榈酰化对于N-Ras的激活和生长因子信号通路中的信号传播是必要的[1]。Ras信号的失调与多种癌症有关,并且针对Ras蛋白的棕榈酰化已被提出作为潜在的治疗策略[3]。

 

论文研究结果的另一个含义是,棕榈酰化可以影响蛋白质的亚细胞定位,并且这对于细胞信号传导具有重要后果[1]。蛋白质定位的失调与多种疾病相关,包括癌症和神经系统疾病[3]。例如,论文指出,G蛋白Gαs的棕榈酰化对其定位于脂质漂浮区域是必要的,并且这种定位对其信号传导活性很重要[1]。Gαs定位的失调与多种疾病相关,包括肥胖和糖尿病[3]。

 

总的来说,这篇论文的研究结果对于理解蛋白质棕榈酰化在疾病中的作用以及开发针对这种脂质修饰的新疗法具有重要意义。论文强调了棕榈酰化在调节蛋白质活性和细胞信号传导中的重要性,并为今后在这一领域的研究提供了框架。

Citations:

[1] Dunphy, J. T., & Linder, M. E. (1998). Signalling functions of protein palmitoylation. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1436(1-2), 245-261. https://doi.org/10.1016/S0005-2760(98)00130-1

[2] Smotrys, J. E., & Linder, M. E. (2008). Palmitoylation of intracellular signaling proteins: regulation and function. Annual Reviews. https://doi.org/10.1146/annurev.biochem.73.011303.073954

[3] Pin-Joe Ko, Scott J Dixon (2018). Protein palmitoylation and cancer

EMBO Reports 19: e46666https://doi.org/10.15252/embr.201846666

 

 

Signalling functions of protein palmitoylation

The paper "Signalling functions of protein palmitoylation" by Dunphy and Linder, published in 1998 in the journal Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, discusses the functions and mechanisms of protein palmitoylation, a reversible lipid modification that anchors numerous signaling proteins to the cytoplasmic face of the plasma membrane[1][2]. The paper reviews recent advances in understanding the biochemistry and cell biology of signaling proteins, with particular emphasis on how palmitoylation affects protein function during cycles of activation and deactivation[1].

 

The paper begins by discussing the importance of protein palmitoylation in regulating protein activity. The reversibility of palmitoylation makes it an attractive mechanism for regulating protein activity, and this feature has generated intensive investigation of the enzymes responsible for palmitoylation and depalmitoylation[3]. The paper then goes on to describe the mechanisms of protein palmitoylation, including the enzymes responsible for the addition and removal of palmitate, and the role of palmitoylation in protein-membrane and protein-protein interactions[1].

 

The authors also discuss the implications of protein palmitoylation for understanding cell signaling and disease. They note that palmitoylation can affect a protein's affinity for membranes, subcellular localization, and interactions with other proteins, and that these effects can have significant consequences for cell signaling[1]. The paper also discusses the role of palmitoylation in regulating the activity of specific signaling proteins, including G proteins, protein kinases, and Ras proteins[1].

 

Overall, the paper provides a comprehensive review of the functions and mechanisms of protein palmitoylation, and highlights the importance of this lipid modification in regulating protein activity and cell signaling. The paper's findings have important implications for understanding the role of protein palmitoylation in disease, and for developing new therapies that target this lipid modification[4].

 

The findings in this paper have significant implications for understanding cell signaling and disease. Palmitoylation is a reversible lipid modification that regulates membrane association, subcellular localization, and protein-protein interactions, and is often essential for protein function[1][2]. Dysregulation of palmitoylation has been implicated in a variety of diseases, including cancer, neurological disorders, and infectious diseases[4].

 

One of the key implications of the paper's findings is that palmitoylation plays an important role in regulating the activity of specific signaling proteins, including G proteins, protein kinases, and Ras proteins[1]. Dysregulation of these proteins has been implicated in a variety of diseases, including cancer and neurological disorders[4]. For example, the paper notes that palmitoylation of Ras proteins is necessary for N-Ras activation and signal propagation in growth factor signaling pathways[1]. Dysregulation of Ras signaling has been implicated in a variety of cancers, and targeting Ras palmitoylation has been proposed as a potential therapeutic strategy[4].

 

Another implication of the paper's findings is that palmitoylation can affect a protein's subcellular localization, and that this can have significant consequences for cell signaling[1]. Dysregulation of protein localization has been implicated in a variety of diseases, including cancer and neurological disorders[4]. For example, the paper notes that palmitoylation of the G protein Gαs is necessary for its localization to lipid rafts, and that this localization is important for its signaling activity[1]. Dysregulation of Gαs localization has been implicated in a variety of diseases, including obesity and diabetes[4].

 

Overall, the findings in this paper have important implications for understanding the role of protein palmitoylation in disease, and for developing new therapies that target this lipid modification. The paper highlights the importance of palmitoylation in regulating protein activity and cell signaling, and provides a framework for future research in this area.

 

Citations:

[1] https://www.sciencedirect.com/science/article/pii/S0005276098001301

[2] https://pubmed.ncbi.nlm.nih.gov/9838145/

[3] https://www.annualreviews.org/doi/full/10.1146/annurev.biochem.73.011303.073954?select23=Choose

[4] https://www.embopress.org/doi/abs/10.15252/embr.201846666

1.png

转载本文请联系原作者获取授权,同时请注明本文来自崔蕴博科学网博客。

链接地址:https://wap.sciencenet.cn/blog-3402731-1393264.html?mobile=1

收藏

分享到:

当前推荐数:0
推荐到博客首页
网友评论0 条评论
确定删除指定的回复吗?
确定删除本博文吗?