冯向军的科学研究博客分享 http://blog.sciencenet.cn/u/冯向军 在本博客中专门从事以统计力学为核心的理论物理研究。

博文

[转载]中英对照:物理学家用量子计算机来让时间倒流

已有 2683 次阅读 2019-3-16 13:56 |个人分类:科普译作|系统分类:科普集锦| 时光倒流 |文章来源:转载

时间倒流?量子计算机将梦幻变成现实!

环球创新智慧

03-1516:25

导读

近日,俄罗斯莫斯科物理技术学院等科研机构的研究人员们让量子计算机倒退至几分之一秒之前的状态。

背景

时间可以倒流吗?也许,这是许多人心中的美好愿望,比如说回到自己年轻的时候。可是,真正要实现这种愿望,往往是在我们的梦境或者科幻小说中,在现实生活中基本上是不可能的。

(图片来源:Aki Honda / 新加坡国立大学量子技术中心)

热力学第二定律告诉我们:“在孤立系统中,体系与环境没有能量交换,体系总是自发地向混乱度增大的方向变化,总使整个系统的熵(entropy)值增大,这就是熵增原理。”

熵,是衡量我们这个世界中事物混乱程度的一个指标。熵的增加意味着混乱程度的增加。熵的理论告诉我们,如果不施加外界影响,事物永远会向着更混乱的状态发展。例如,我们的办公桌上的物品,如果没人来整理,只会越来越乱,不会越来越整齐。拿我们的宇宙来说,从一个奇点经过大爆炸演变成今天的样子,熵也在不断增加,变得越来越无序。


熵的增加,让我们直观地感受到了“过去”和“未来”之间的区别。例如,随着一个人年龄的增长,脸上的皱纹就会越来越多。因此,我们意识到了时间是朝着一个方向在流逝,这就是所谓的“时间箭头”。

著名物理学家霍金在《时间简史》中这样描述时间箭头:“无序度或熵随着时间增加,是所谓时间箭头的一个例子。时间箭头将过去和将来区别开来,使时间有了方向。至少有三种不同的时间箭头:第一个,是热力学时间箭头,即是在这个时间方向上无序度或熵增加;然后是心理学时间箭头,这就是我们感觉时间流逝的方向,在这个方向上我们可以记忆过去而不是未来;最后,是宇宙学时间箭头,在这个方向上宇宙在膨胀,而不是收缩。”

不过,著名的物理学家麦克斯韦隐隐感觉到,这个宇宙中可能存在着某种像“妖精”一般存在的机制,在抵抗着熵的增加。因此,他提出了著名的思想实验“麦克斯韦妖(Maxwell's demon)”。

这个思想实验大致是这样的:“一个绝热容器被分成相等的两格,中间是由“妖”控制的一扇小“门”,容器中的空气分子作无规则热运动时会向门上撞击,“门”可以选择性的将速度较快的分子放入一格,而较慢的分子放入另一格。这样,其中的一格就会比另外一格温度高,可以利用此温差,驱动热机做功。这是第二类永动机的一个范例。“

麦克斯韦妖思想实验的示意图(图片来源:维基百科)

2017年2月,俄罗斯莫斯科物理技术学院(MIPT)量子信息理论实验室领导的国际科学家团队在《科学报告(Scientific Reports)》期刊上发表的一篇论文【2】称:量子系统的熵可以随着时间流逝而减少。这一发现违背了热力学第二定律中的熵增原理。也就是说,他们发现了量子的麦克斯韦妖,可以减少系统的熵。

这违背了热力学第二定律。这种现象产生的原因是:在经典物理和量子物理中熵的变化是不同的。在经典系统中,熵的减少必然需要热量传输;在量子系统中,由于量子纠缠,熵的减少可无需任何能量传输。

研究人员拿灰姑娘做了一个很好的比喻。灰姑娘的继母给她一碗豆子,其中豌豆和扁豆混在一起,要她分开这些豆子。从物理学角度说,就是减少系统的熵。一个经典的灰姑娘,在一个孤立的系统中,无法分开这些豆子;而一个量子的灰姑娘却可以做到。类似地,研究人员也可以通过量子效应来“整理”系统的状态。

2018年12月,俄罗斯莫斯科物理技术学院、瑞士苏黎世联邦理工学院、美国阿贡国家实验室的科学人员们描述了一种延伸的量子麦克斯韦妖。在一个离“妖”1到5米距离的系统中,一个设备局部地违反了热力学第二定律。该设备可应用于量子计算机和微型冰箱,高精准度地冷却任何物体。这项研究成果【3】发表在《物理评论B(Physical Review B)》期刊上。

创新

近日,俄罗斯莫斯科物理技术学院等科研机构的研究人员们让量子计算机的状态倒退至几分之一秒之前的状态。他们也计算出了一个电子在空荡荡的星际空间中自发地回到其不久之前的状态的可能性。

他们的研究成果【4】发表在《科学报告(Scientific Reports)》期刊上。其实,这篇最新的论文是从另外一个角度来应对同样的问题。研究人员们人为地制造出了一种向着与热力学时间箭头相反的方向演变的状态。


技术

是什么让未来与过去变得不同?大部分的物理定律并没有区分未来和过去。例如,我们用一个方程去描述两个相同的台球碰撞和反弹。如果我们用摄像头记录下这个事件的特写镜头然后再倒叙播放,那么这个事件仍然可以用同样的方程来描述。进一步说,一个人根本无法辨别出这段录像是实际记录的,还是人工制作的回放录像。顺序和倒叙的两个录像版本看上去都像真的一样。这似乎就像台球违背了直觉的时间感。

开球时,我们用母球撞击排成金字塔形状的其他球,这些球会向各个方向散开。如果我们记录下这个场景,一个人根本无需了解游戏规则,就可以轻松地分辨出哪个是真实场景的录像,哪个是倒叙播放的录像。这些散乱的球又回到开球之前的状态,违背了我们的直觉,显得非常荒谬。其实,原因就是,我们对于热力学第二定律的直观认识:一个孤立的系统要么保持静止,要么就朝着更加混乱的方向演变。


其他大多数的物理定律,不会阻止这些分开的球重新集结成金字塔形,也不会阻止泡好的茶流回茶包,或者一个火山朝着相反地方向喷发。但是,我们重来没有看到这些事情发生过。这是因为这需要一个孤立的系统,在没有外界干扰的情况下,假设一种更加有序的状态,与热力学第二定律相反。热力学第二定律的道理一直都没有得到完全详细的解释,但是研究人员们已经在理解其背后的基本规律方面取得了很大进展。

MIPT的量子物理学家们决定试验一下时间是否可以逆转,至少说,能在“单个粒子”以及“几分之一秒”的条件下。这一次,他们不再是通过撞球,而是测试了一个处于空荡荡的星际空间中的孤立电子。

研究人员 Andrey Lebedev 表示:“假设当我们开始观察一个电子的时候,电子已经被定位。这意味着,我们对电子在空间中的位置很确定。量子力学的定律让我们无法绝对准确地知道电子的位置,但是我们可以大概描述出电子可能位于的一小块区域。”

这位物理学家解释道,电子状态的演化由薛定谔方程决定。尽管这个方程并没有区分未来和过去,但是包含电子的空间区域却会非常快地扩散开来。也就是说,系统会变得更加混乱。电子位置的这种不确定性不断增长。这有点类似于宏观系统(例如台球)由于热力学第二定律而产生的无序。

另外一位论文作者 Valerii Vinokur 表示:“然而,薛定额方程是可逆的。从数学的角度说,这意味着通过特定的变换,例如复共轭运算。在方程的描述中,‘模糊’的电子会在相同的时间内,返回那一小块区域。”尽管该现象并没有在自然界中被观察到,但是由于弥漫着宇宙的微波背景辐射,这种现象从理论上说是可能发生的。

一个电子经过几分之一秒变“模糊”之后,有可能自发返回其不久之前所在的区域。团队开始计算观察到这种现象的可能性。结果却是,即使某人花费整个宇宙寿命(137亿年)的时间每秒观察100亿个新定位的电子,粒子状态的反演也只会发生一次。即使是那样,电子也只能回到不足一百亿分之一秒的过去。

宏观现象例如台球、火山等,显然是发生在更大的时间级别上,并具有数量庞大的电子和其他粒子。这就解释了为什么我们无法观察到一个人返老还童,或者一个墨迹从纸上消失。

研究人员们尝试通过一个“四阶段”实验来逆转时间。他们观察的不是电子,而是量子计算机的状态。这种量子计算机先是由两个超导量子位组成,后来又由三个超导量子位组成。

在量子计算机上的实际实验的四个阶段反映了思想实验的各个阶段,涵盖了太空中的电子以及台球的想象类比。这三个系统都是从起初的有序向无序演化,然后一个完全定时的外部干扰逆转了这一过程。

第一阶段:有序。每个量子位都在基态进行初始化,以0表示。这种高度有序的配置对应着一个小区域中的电子,或者台球在开球之前的状态。

第二阶段:退化。秩序变混乱。例如,电子变得模糊,好像处于更大的空间区域中,或者台面上的球在遭受撞击之后散开,量子位的状态变成更加复杂变化的0和1的模式。这是通过在量子计算机上简单地启动一个演化程序来实现的。实际上,由于与环境的相互作用,类似的退化也会自行发生。然而,自主演化的受控程序将使得实验的最后阶段成为可能。

第三阶段:时间逆转。一个特定的程序改变了量子计算机的状态,使之从混乱到有序“反向”演化。在电子的案例中,这种操作类似于随机的微波背景辐射,但是这一次它是被故意引入的。对于台球来说,一个明显牵强附会的解释就是,某人给了桌子“完美的一踢”。

第四阶段:重生。第二阶段中的演化程序再次启动。例如,之前的那个“完美一踢”是成功的,程序将不会导致更多的混乱,而是让量子位将返回过去的状态,就像模糊的电子被重新定位,而台球将会沿着轨迹回到开球之前的状态,最终形成一个金字塔形。

价值

研究人员们发现,85%的情况下,两个量子位的量子计算机可以真正回到初始状态。当涉及三个量子位的时候,更多的错误会发生,成功率只有大约50%。论文作者们称,这些错误是由实际量子计算机的缺陷造成的。随着设备的设计变得更加复杂,错误率有望降低。

有意思的地是,时间反转算法本身可以证明对于制造更加精准的量子计算机有作用。Lebedev 解释道:“我们的算法可以被更新,并用于测试为量子计算机而写的程序,以及消除噪声和错误。”

关键字

量子计算机、量子位、物理

参考资料

【1】https://mipt.ru/english/news/physicists_reverse_time_using_quantum_computer

【2】https://www.nature.com/articles/srep32815

【3】https://journals.aps.org/prb/abstract/10.1103/PhysRevB.98.214502

【4】http://dx.doi.org/10.1038/s41598-019-40765-6

【5】https://mipt.ru/english/news/quantum_systems_can_violate_the_second_law_of_thermodynamics_say_mipt_s_physicists

【6】https://mipt.ru/english/news/quantum_maxwell_s_demon_teleports_entropy_out_of_a_qubit

环球创新智慧

最近更新:03-1516:25

简介:最新颖最前沿的技术和创新

作者最新文章

时间倒流?量子计算机将梦幻变成现实!


私密的体域网:让植入式医疗设备更安全!



便携式原子钟:或将减少人类对卫星导航的依赖!

相关文章

Physicists reverse time using quantum computer

March 13, 2019,
Moscow Institute of Physics and Technology


Physicists reverse time using quantum computer

Credit: @tsarcyanide/MIPT

Researchers from the Moscow Institute of Physics and Technology teamed up with colleagues from the U.S. and Switzerland and returned the state of a quantum computer a fraction of a second into the past. They also calculated the probability that an electron in empty interstellar space will spontaneously travel back into its recent past. The study is published in Scientific Reports.

"This is one in a series of papers on the possibility of violating the second law of thermodynamics. That law is closely related to the notion of the arrow of time that posits the one-way direction of time from the past to the future," said the study's lead author Gordey Lesovik, who heads the Laboratory of the Physics of Quantum Information Technology at MIPT.

"We began by describing a so-called local perpetual motion machine of the second kind. Then, in December, we published a paper that discusses the violation of the second law via a device called a Maxwell's demon," Lesovik said. "The most recent paper approaches the same problem from a third angle: We have artificially created a state that evolves in a direction opposite to that of the thermodynamic arrow of time."

What makes the future different from the past

Most laws of physics make no distinction between the future and the past. For example, let an equation describe the collision and rebound of two identical billiard balls. If a close-up of that event is recorded with a camera and played in reverse, it can still be represented by the same equation. Moreover, it is not possible to distinguish from the recording if it has been doctored. Both versions look plausible. It would appear that the billiard balls defy the intuitive sense of time.

However, imagine recording a cue ball breaking the pyramid, the billiard balls scattering in all directions. In that case, it is easy to distinguish the real-life scenario from reverse playback. What makes the latter look so absurd is our intuitive understanding of the second law of thermodynamics—an isolated system either remains static or evolves toward a state of chaos rather than order.

Most other laws of physics do not prevent rolling billiard balls from assembling into a pyramid, infused tea from flowing back into the tea bag, or a volcano from "erupting" in reverse. But these phenomena are not observed, because they would require an isolated system to assume a more ordered state without any outside intervention, which runs contrary to the second law. The nature of that law has not been explained in full detail, but researchers have made great headway in understanding the basic principles behind it.


Spontaneous time reversal

Quantum physicists from MIPT decided to check if time could spontaneously reverse itself at least for an individual particle and for a tiny fraction of a second. That is, instead of colliding billiard balls, they examined a solitary electron in empty interstellar space.

"Suppose the electron is localized when we begin observing it. This means that we're pretty sure about its position in space. The laws of quantum mechanics prevent us from knowing it with absolute precision, but we can outline a small region where the electron is localized," says study co-author Andrey Lebedev from MIPT and ETH Zurich.

The physicist explains that the evolution of the electron state is governed by Schrödinger's equation. Although it makes no distinction between the future and the past, the region of space containing the electron will spread out very quickly. That is, the system tends to become more chaotic. The uncertainty of the electron's position is growing. This is analogous to the increasing disorder in a large-scale system—such as a billiard table—due to the second law of thermodynamics.


Physicists reverse time using quantum computer

The four stages of the actual experiment on a quantum computer mirror the stages of the thought experiment involving an electron in space and the imaginary analogy with billiard balls. Each of the three systems initially evolves from order …more"However, Schrödinger's equation is reversible," adds Valerii Vinokur, a co-author of the paper, from the Argonne National Laboratory, U.S. "Mathematically, it means that under a certain transformation called complex conjugation, the equation will describe a 'smeared' electron localizing back into a small region of space over the same time period." Although this phenomenon is not observed in nature, it could theoretically happen due to a random fluctuation in the cosmic microwave background permeating the universe.


The team set out to calculate the probability to observe an electron "smeared out" over a fraction of a second spontaneously localizing into its recent past. It turned out that even across the entire lifetime of the universe—13.7 billion years—observing 10 billion freshly localized electrons every second, the reverse evolution of the particle's state would only happen once. And even then, the electron would travel no more than a mere one ten-billionth of a second into the past.

Large-scale phenomena involving billiard balls and volcanoes obviously unfold on much greater timescales and feature an astounding number of electrons and other particles. This explains why we do not observe old people growing younger or an ink blot separating from the paper.

Reversing time on demand

The researchers then attempted to reverse time in a four-stage experiment. Instead of an electron, they observed the state of a quantum computer made of two and later three basic elements called superconducting qubits.

  • Stage 1: Order. Each qubit is initialized in the ground state, denoted as zero. This highly ordered configuration corresponds to an electron localized in a small region, or a rack of billiard balls before the break.

  • Stage 2: Degradation. The order is lost. Just like the electron is smeared out over an increasingly large region of space, or the rack is broken on the pool table, the state of the qubits becomes an ever more complex changing pattern of zeros and ones. This is achieved by briefly launching the evolution program on the quantum computer. Actually, a similar degradation would occur by itself due to interactions with the environment. However, the controlled program of autonomous evolution will enable the last stage of the experiment.

  • Stage 3: Time reversal. A special program modifies the state of the quantum computer in such a way that it would then evolve "backwards," from chaos toward order. This operation is akin to the random microwave background fluctuation in the case of the electron, but this time, it is deliberately induced. An obviously far-fetched analogy for the billiards example would be someone giving the table a perfectly calculated kick.

  • Stage 4: Regeneration. The evolution program from the second stage is launched again. Provided that the "kick" has been delivered successfully, the program does not result in more chaos but rather rewinds the state of the qubits back into the past, the way a smeared electron would be localized or the billiard balls would retrace their trajectories in reverse playback, eventually forming a triangle.

The researchers found that in 85 percent of the cases, the two-qubit quantum computer returned back into the initial state. When three qubits were involved, more errors happened, resulting in a roughly 50 percent success rate. According to the authors, these errors are due to imperfections in the actual quantum computer. As more sophisticated devices are designed, the error rate is expected to drop.

Interestingly, the time reversal algorithm itself could prove useful for making quantum computers more precise. "Our algorithm could be updated and used to test programs written for quantum computers and eliminate noise and errors," Lebedev explained.

 Explore further: Quantum Maxwell's demon 'teleports' entropy out of a qubit

More information: G. B. Lesovik et al. Arrow of time and its reversal on the IBM quantum computer, Scientific Reports(2019). DOI: 10.1038/s41598-019-40765-6 



Read more at: https://phys.org/news/2019-03-physicists-reverse-quantum.html#jCp





https://wap.sciencenet.cn/blog-1968-1167884.html

上一篇:现代泛系理论的纲领中念觉和知幻同样重要
下一篇:现代泛系理论的基本时间观
收藏 IP: 45.56.155.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-4-20 06:17

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部